

		^
(h	DIE	OT.
		UI
U		<u> </u>

Engineering Design Friedrich-Alexander-University Erlangen-Nuremberg Prof. Dr.-Ing. Sandro Wartzack

Modular Multi-Material Truss Structures – Design Space Optimization and experimental Validation

Michael Jäger, Prof. Dr.-Ing. Sandro Wartzack

Gefördert durch:

Bundesministerium für Wirtschaft * und Energie

Outline

- Introduction
- CAE-based design method
- Validation
- **Testing Equipment**
- Summary

Engineering Design Our location

- ...in the centre of the metropolitan region of Nuremberg
- ...in one of the heaviest industrialized regions of Germany
- ...in one of the most innovative regions of Germany
- Focuses:
 - Automotive
 - Mechanical engineering
 - Heart of the rolling bearing industry
 - Energy technology
 - Electrical engineering
 - Medical technology

Engineering Design

Organisation structure and research groups

Virtual product development and engineering methodology

Digital Engineering

Dimensional Management

User-centred design

Machine elements and component design

Tribological PVD / PACVD coating systems

Rolling bearing technology

Lightweight Design

Lightweight-Design

Lightweight-Engineering

Lightweight-Validation

Engineering Design Lightweight Design

Introduction **Modular System**

Gefördert durch:

Bundesministerium für Wirtschaft * und Energie

Hand laminated

Modular system

Picture source: pasculli.de

Introduction **Standardization**

Gefördert durch:

Bundesministerium für Wirtschaft und Energie

Fibre-reinforced composites have excellent mechanical properties

Reduction of costs by standardization

- Standardization of components
- Standardization of development

Eickenbusch, Heinz; Krauss, Oliver (2013): Kohlenstofffaserverstärkte Kunststoffe im Fahrzeugbau - Ressourceneffizienz und Technologien. Kurzanalyse Nr. 3 und Dokumentation des Fachgesprächs. VDI Zentrum Ressourceneffizienz GmbH. Berlin.

Design Process

Topology Optimization

Gefördert durch:

Bundesministerium für Wirtschaft und Energie

Mass Minimization

Optimization Constraints

- Node displacement
- Permissible stresses

Manufacturing Constraints

- Angle between struts
- Number of struts

Fairclough et al. (2018)

Prof. Dr.-Ing. Sandro Wartzack

Validation **Overview**

Validation **Testing Equipment**

Gefördert durch:

Bundesministerium für Wirtschaft und Energie

High speed test rig Zwick HTM5020

Performance of highly dynamic tensile and compression tests (0,001 to 20 m/s)

Servo-hydraulic Pulser **Zwick HCT 25/250**

Cyclic continuous loads up to 25 kN / 250 Nm / 30 Hz

Modular stiffness test rig "Bärenfels"

Testing Equipment High speed test rig - Zwick HTM 5020

Testing system

- Servo-hydraulic high speed testing machine
- Tests with up to 20 m/s, 50 kN
- Attainable strain rates up to 1000 s⁻¹
- Optional: Temperature control -60 ...+150 °C

Determinable parameters (e.g.)

- Anisotropic (tensile-)elastic and shear moduli
- Transversal contraction
- Flow curve or Johnson-Cook-Parameters:
 - Yield stress
 - Strain hardening modulus and exponent
 - Strain rate coefficient
- Failure parameters

Testing Equipment

Optical strain measurement - GOM ARAMIS 3D HHS

High speed cameras

- Recordings up to 150.000 fps
- Stereoscopic arrangement
- 0,01% 100% strain resolution

Grey value correlation

- Determination of strains by relative displacement of speckled areas
- Identification of necking and thickness decrease

Example

- Tensile test, test speed 5 m/s
- Recording with 60.000 fps, strain superimposed

Testing Equipment

Servo-hydraulic Pulser - Zwick HCT 25/250

Motivation

 Considering non-linear fatigue damage evolution of composite parts

Test forces and moments

- Axial force max. ±25 kN
- Torque max. ±250 Nm
- Frequency f = 15 Hz

Signal shape and load control

- Sinusoidal oscillation
 - Fixed minimum load F_{min} = 0,1 kN
 - Maximum load F_{max} depending on fibre orientation and load state
 - Frequency f = 4 Hz

Testing Equipment Modular stiffness test rig – "Bärenfels"

Testing system

© Engineering Design

Prof. Dr.-Ing. Sandro Wartzack

Friedrich-Alexander-Universität Erlangen-Nürnberg

- Static stiffness and strength testing
- Modular structure

Test forces and sizes

- Test load up to 100 kN
- Test track up to 1250 mm
- Test items up to 1300 x 1250 x 1000 mm

Gefördert durch:

für Wirtschaft und Energie

Summary

- Multi-Material structures are utilizing specific material properties
- Reduction of costs by standardization and modularization
- Automated holistic design process for multi-material truss structures

 Component and system tests to characterize semi-finished products and provide information for additional mass reduction

