

Technology Day 2020

4.03.2020

Thermo-Mechanical Modeling of Quasi-Simultaneous Laser Transmission Welding using LS-DYNA with Focus on Accuracy of Heat Input Calculation

Johannes Käsbauer¹, Anton Schmailzl¹, Tobias Loose², Stefan Hierl¹

¹Laser Material Processing Laboratory, OTH Regensburg ²DynaWeld GmbH & Co. KG

- 1. Principle of Quasi-Simultaneous Laser Transmission Welding
- 2. Simulation Model
 - a. Overlap Configuration
 - b. T-Joint Configuration
- 3. Calculation of Heat Input
- 4. Overlap Configuration Weldings of PA6
- 5. T-Joint Configuration
 - a. Recent Issues
 - b. Improvement
- 6. Conclusion and Outlook

- laser radiation mainly transmitted by upper polymer and absorbed in lower one
- high feed rate (v > 0,5 m/s) causes nearly simultaneous melting of entire weld contour
- melt continuously squeezed out of joining zone

2. Simulation Model a. Overlap Configuration

- negligibly small deformations of polymers → thermal simulation model
- 2D geometry
- temperature dependent specific heat and thermal conductivity
- material: PA 6

2. Simulation Model b. T-Joint Configuration

- thermo-mechanical simulation model
- element formulation: plane strain EFG
- 2D contact between joining partners; allowing gaps
- thermo-elasto-viscoplastic material model
 - parametrized using tensile tests from 20 °C to 140 °C
 - parametrization beyond 140 °C based on assumptions

Analytical equation [1]:

$$Q_l(y,z) = \frac{8 \cdot \alpha_l \cdot P}{\pi \cdot d^2} \cdot e^{\left(-\alpha_l \cdot z - 8 \cdot \frac{y^2}{d^2} - \alpha_u \cdot t_u\right)} \cdot \frac{1}{t_P} \cdot \int_0^{t_P} e^{\left(-8 \cdot \frac{(v \cdot t)^2}{d^2}\right)} dt$$

 Q_l : heat input in lower polymer; *d*: beam diameter; *P*: laser power; *v*: feed rate;

 t_u : thickness of upper polymer; α_l , α_u : absorption coefficient; t_P : duration of scan repetition

Implementation in LS-DYNA: calculation of element's heat input according to centroid coordinates

Numerically calculated energy input:

$$E_{num}(y = y_c, z = z_c) = \int_{z_l}^{z_u} \int_{y_l}^{y_u} Q_l(y = y_c, z = z_c) dy dz$$

Analytically calculated energy input:

$$E_{analytic}(y,z) = \int_{z_l}^{z_u} \int_{y_l}^{y_u} Q_l(y,z) dy dz$$

Deviation of energy input calculation in one element: $Dev(y,z) = \frac{E_{analytic} - E_{num}}{E_{num}}$

carbon black content <i>c. b.</i>	absorption coefficient α	beam diameter <i>d</i>	element edge length z_l - z_u ; y_l - y_u	minimum deviation min ($Dev(y, z)$)
[wt.%]	[mm ⁻¹]	[mm]		[%]
0.3	20			1.0
0.5	43	4.5	0.025	4.9
1.0	94			24.6

4. Overlap Configuration Weldings of PA6

- relatively small deviations between weld seam dimensions in experiment and simulation
- temperature field is calculated accurately

- calculation of heat input with respect to global coordinate system
- vertical movement of joining zone could not be taken into account in heat input calculation
- loss of heat input in lower joining partner

OSTBAYERISCHE TECHNISCHE HOCHSCHULE REGENSBURG

5. T-Joint Configuration b. Improvement

- calculation of heat input in multiple subsections
- definition of reference nodes for each subsection
- calculation of heat input according to reference node's coordinates

Conclusion:

- Deviations of heat input calculation are strongly dependent on polymer's absorption properties and element size.
- Recent issues concerning the deviations of heat input calculation as a consequence of deformations are bypassed using the new reference node feature.

<u>Outlook:</u>

- application for other thermoplastics
- implementation of scattering phenomena in heat input calculation

OSTBAYERISCHE

- [1] Schmailzl, A.; Hüntelmann, S.; Loose, T.; Käsbauer, J.; Maiwald, F.; Hierl, S.: Potentials of the ALE-Method for Modeling Plastics Welding Processes, in Particular for the Quasi-Simultaneous Laser Transmission Welding. In: Numerical Analysis of Weldability. Graz 2018
- [2] Schmailzl, A.; Käsbauer, J.; Martan, J.; Honnerová, P.; Schäfer, F.; Fichtl, M.; Lehrer, T.; Prušáková, L.; Tesar, J.; Skála, J.; Honner, M.; Hierl, S.: Measurement of Core Temperature through Semi-Transparent Polyamide 6 using Scanner-Integrated Pyrometer in Laser Welding. In: International Journal of Heat and Mass Transfer 146, 2019

The authors want to thank the "Bayerisches Staatsministerium für Wirtschaft und Medien, Energie und Technologie" for funding the project "3D-LASPYRINTScanner" within the program "Elektronische Systeme Bayern (ELSYS)".