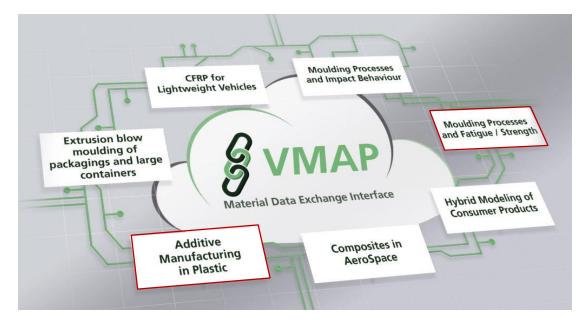
Simulation of creep behavior for short-fiber reinforced plastic parts

J. Strauch¹, P. Reithofer²

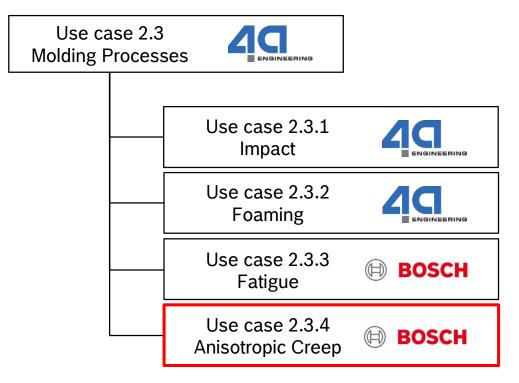
¹ Robert Bosch GmbH, Corporate Sector Research and Advance Engineering – Advance Production Technology 1 – Plastics Engineering, Renningen (Germany)

² 4a engineering GmbH, Traboch (Austria)

4a technology days – plastics on the test rig 2nd – 4th of March 2020, Werfenweng (Austria)


1. Introduction

- 2. Material characterization
- 3. Material model and parameter determination
- 4. Validation
- 5. Summary/Outlook
- 6. Appendix: Mapping with FiberMap



Introduction VMAP - Industrial use cases

- Robert Bosch is participating in two use cases
 - UC 2.3: (Injection) Molding Processes
 - ► UC 2.4: Additive Manufacturing in Plastics

- ► Use case 2.3 is divided into sub use cases
 - Presentation focuses on sub-use case "Creep"

CR/APP2-Strauch | 2020-03-04

© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Introduction Procedure and simulation chain

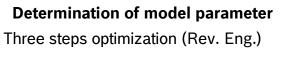
► Procedure

Material characterization (PBT-GF30)

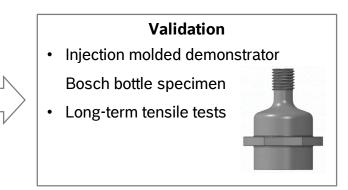
Tensile specimen (BZ12) milled

out of 120 x 80 x 2 mm plate

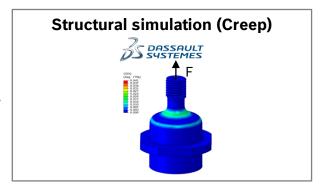
• Cutting angles 0°, 15°, 30°, 60°, 90°


Injection molding simulation

AUTODESK MOLDFLOW


- Quasi-static tensile tests
- Long-term tensile tests

Simulation chain

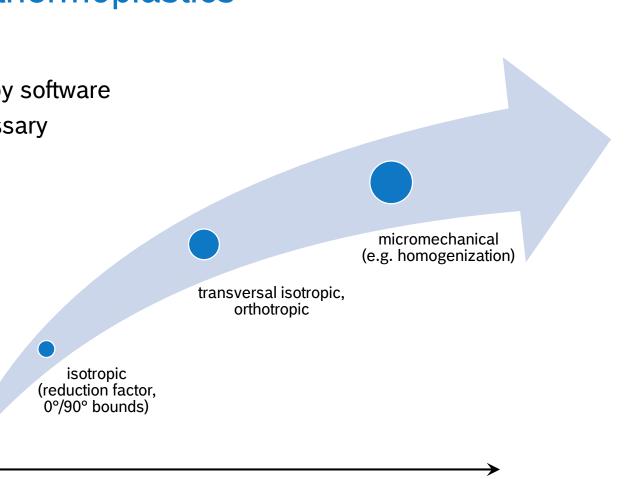


- Transversal Elasticity
- Anisotropic Plasticity
- Anisotropic Creep

CR/APP2-Strauch | 2020-03-04

© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Introduction Modeling of fiber reinforced thermoplastics


§ VMA

Goal

- Use standard material models, provided by software
- Simple as possible and complex as necessary

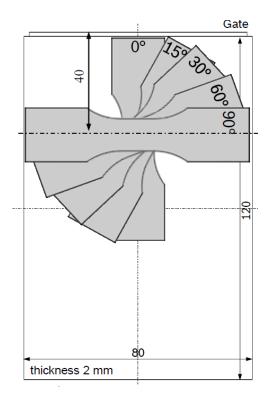
Assumptions

- Elasto-viscoplastic approach
- Primary and secondary creep only

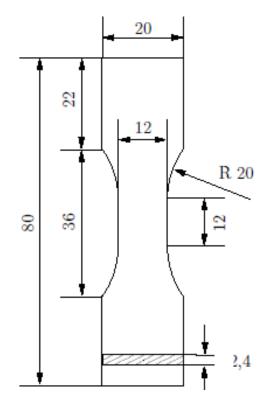
Level of material model complexity

1. Introduction

2. Material characterization


3. Material model and parameter determination

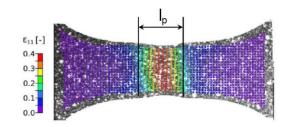
- 4. Validation
- 5. Summary/Outlook
- 6. Appendix: Mapping with FiberMap


Material characterization Preparation of test specimen

 Injection molded plate 120 x 80 x 2 mm³

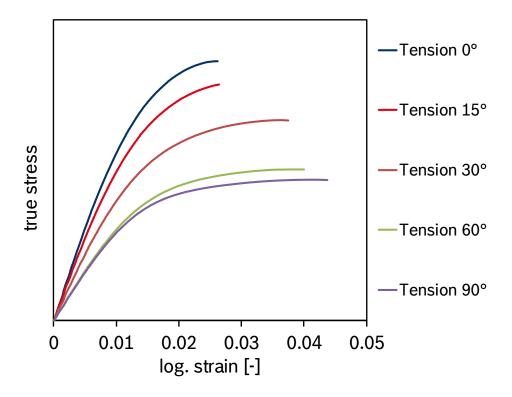
► Extraction of specimen

Dimensions BZ12 specimen


CR/APP2-Strauch | 2020-03-04

© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

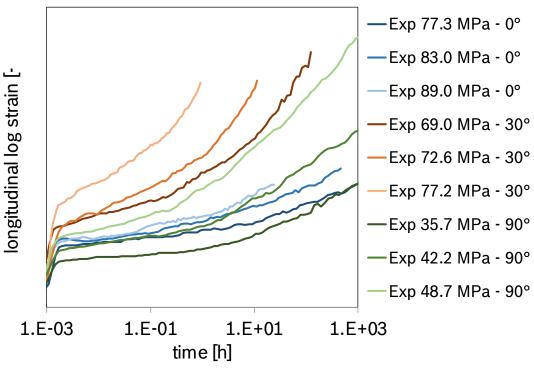
Material characterization Quasi-static tensile tests


- ► Tensile testing machine (Zwick Z020)
 - ► Test lab: Fraunhofer LBF, Darmstadt
 - Digital Image Correlation (Vic2D, Limess)

• Calculation of true stress σ_w

$$\sigma_w = \frac{F}{A_0 e^{2\varepsilon_{22}}}$$

Stress-strain curves @23°C (PBT-GF30)


Material characterization Long-term tensile tests

- Creep testing machine (Coesfeld)
 - ► Test lab: Robert Bosch GmbH, Renningen

8 VMAP

Creep curves @23°C (PBT-GF30)

[Robert Bosch GmbH, CR/APP2-Moosbrugger, -Klostermann, -Schneider]

O CR/APP2-Strauch | 2020-03-04

© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

1. Introduction

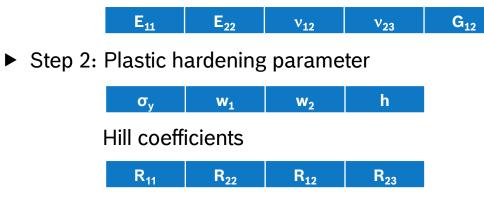
2. Material characterization

3. Material model and parameter determination

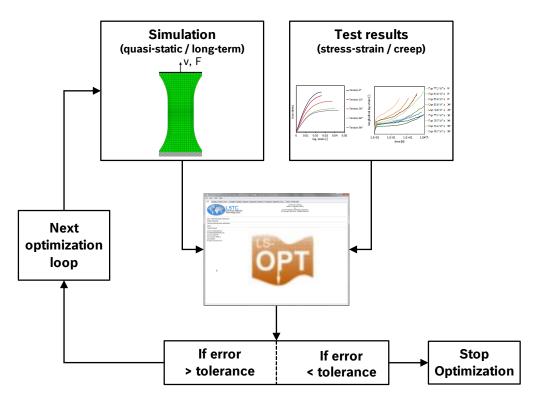
- 4. Validation
- 5. Summary/Outlook
- 6. Appendix: Mapping with FiberMap

Material model and parameter determination **ABAQUS material model**

Abaqus command	Model Type / No. of parameter	Parameter definition				
*elastic, type=engineering constants	Orthotropic model: • 9 parameter per temperature Transversal isotropic model: • 5 parameter per temperature	$E_{11}, E_{22}, E_{33}, v_{12}, v_{13}, v_{23}, G_{12}, G_{13}, G_{23}, T$ $E_{11}, E_{22}, v_{12}, v_{23}, G_{12}$ and the dependent variables $E_{33} = E_{22}$ $v_{13} = v_{12}$ $G_{13} = G_{12}$ $G_{23} = E_{22}/(2(1+v_{23}))$				
*plastic, hardening=user	Reduced G'sell Jonas model: $\sigma = \sigma_y (1 - w_1 e^{-w_2 \varepsilon_{pl}}) e^{h \varepsilon_{pl}^2}$					
*creep, law=time	• 4 parameter Power law model (time hardening): $\dot{\varepsilon}_{cr} = k \cdot \sigma^p \cdot t^n$	σ _y , w ₁ , w ₂ , h				
	3 parameter per temperature	k, p, n, T				
*potential	Hill potential for anisotropic plastic yielding6 parameter per temperature	R_{11} , R_{22} , R_{33} , R_{12} , R_{13} , R_{23} , T Assumptions in current model: $R_{11}=1$ $R_{33}=R_{22}$ $R_{13}=R_{12}$				
11 CR/APP2-Strauch 2020-03-04 © Robert Bosch GmbH 2019. All rights reserved, also regarding at		ustrial property rights.				

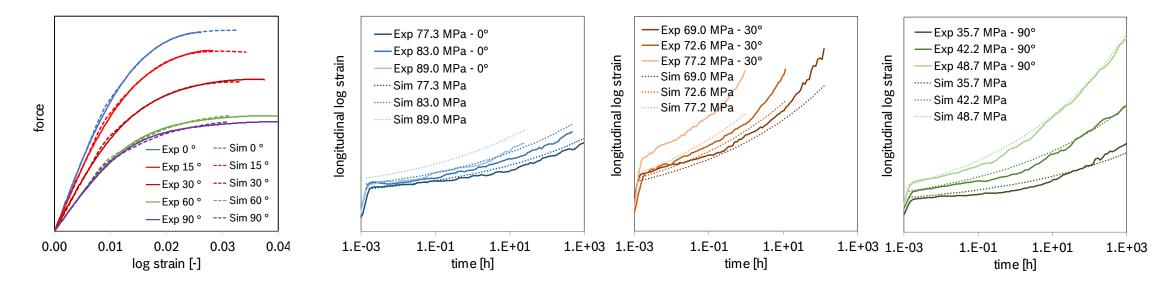

© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Material model and parameter determination Case 1: Transversal parameter fitting



- Optimization workflow (Reverse engineering)
 - ► Step 1: Transversal isotropic elastic parameter

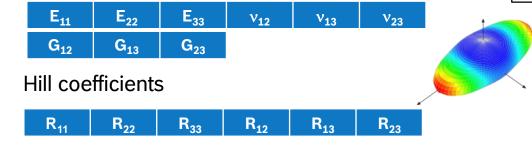
Step 3: Time hardening creep parameter



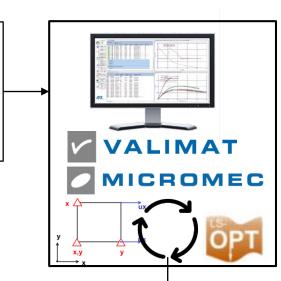
Material model and parameter determination Case 1: Parameter fitting results

► Quasi-static

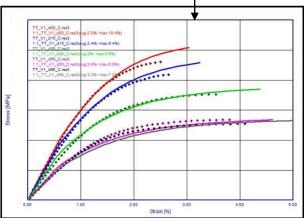
► Long-term (creep)



Mesh BZ12: 8856 elements (C3D8)


Material model and parameter determination Case 2: Orthotropic parameter fitting

- ► Workflow
 - Step 1: Determine orthotropic elastic parameter with VALIMAT®/MICROMEC®



- ► Step 2: Reverse engineering Plastic hardening with VALIMAT®
 - σ_y σ_H Ε_T
- ► Step 3: Reverse engineering Time hardening creep parameter

(stress-strain / creep)

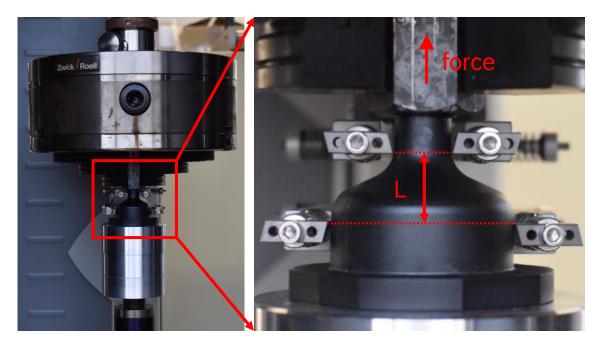
14 CR/APP2-Strauch | 2020-03-04

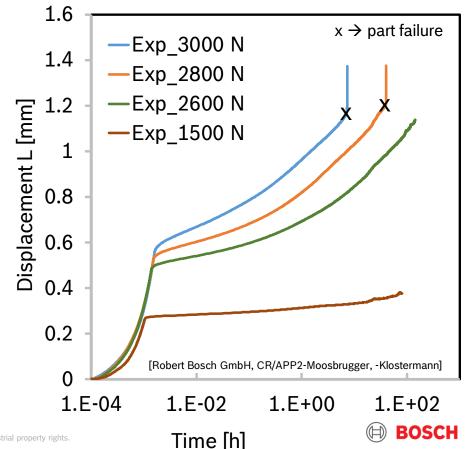
© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights

1. Introduction

- 2. Material characterization
- 3. Material model and parameter determination

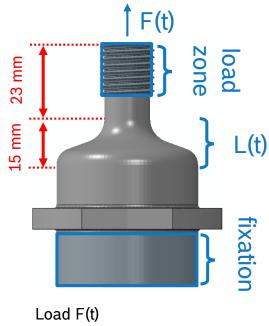
4. Validation

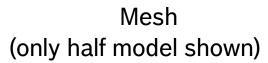

- 5. Summary/Outlook
- 6. Appendix: Mapping with FiberMap

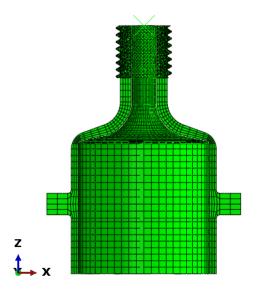

Validation

Tensile creep tests on bottle specimen

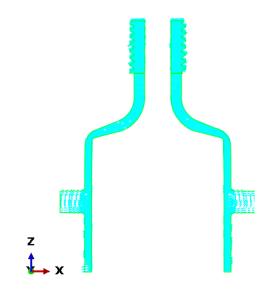
- ► Tensile testing machine (Zwick Z050)
 - ► Test lab: Robert Bosch GmbH, Renningen
 - Deformation measurement: clamping extensioneter


Creep curves @23°C (PBT-GF30)




Validation FE-Model

Boundary conditions



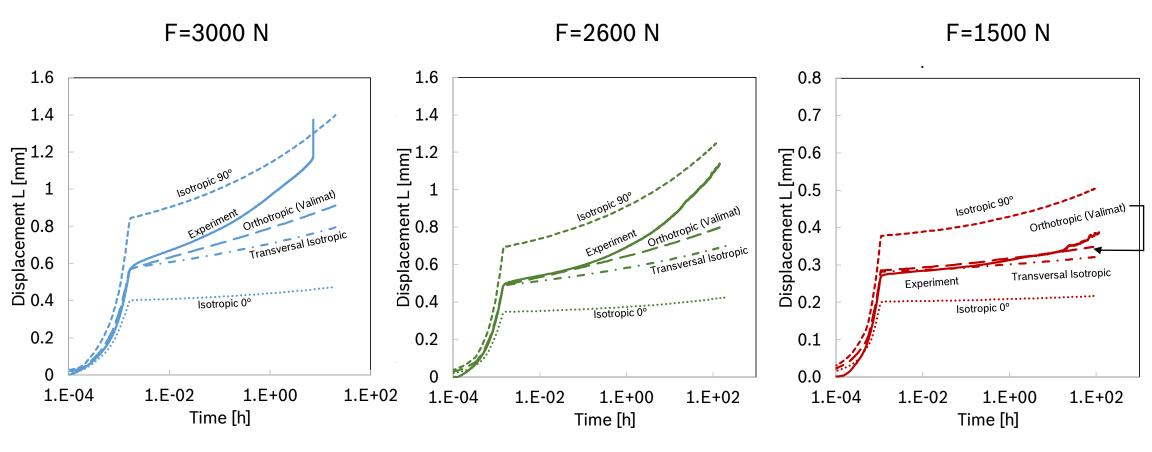
Output displacement L(t)

131059 Nodes 61368 Elements (C3D20, C3D10) Local coordinate systems (elementwise definition)

 $\label{eq:Moldflow} \qquad \textbf{\rightarrow} \ \text{Fiber orientation tensor a_{ij}}$

4a FiberMap \rightarrow Mapping a_{ij}

- \rightarrow Principal axis transformation
- \rightarrow Abaqus distribution table


17 CR/APP2-Strauch | 2020-03-04

© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

SVMAP

Validation Simulation vs. experiment

© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

1. Introduction

- 2. Material characterization
- 3. Material model and parameter determination

4. Validation

5. Summary/Outlook

6. Appendix: Mapping with FiberMap

Summary/Outlook Summary

Specimen level (parameter fitting)

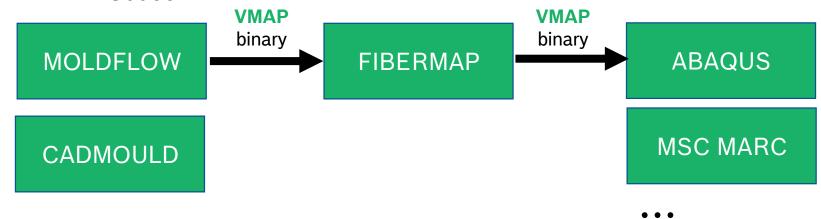
- Stress-strain curves are well covered by transversal isotropic and orthotropic model
- ► Creep strain curves (most notably with 0° and 45° orientations) show significant deviations
 - \rightarrow Quality of experimental creep curves?

Part level (validation)

- Creep simulations on part level (bottle demonstrator) show significant deviations at
 - higher load levels
 - advanced times

Possible improvements on material model site

- Cover eigenvalues of fiber orientation tensor (element based material card, micromechanical approach)
- Cover tertiary creep (creep- damage approach)


Summary/Outlook Outlook

& VMAP

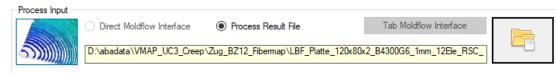
► VMAP – Current status

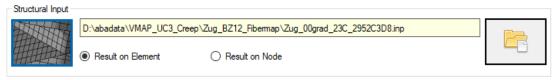
► VMAP – Outlook

21 CR/APP2-Strauch | 2020-03-04

© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

1. Introduction


- 2. Material characterization
- 3. Material model and parameter determination
- 4. Validation
- 5. Summary/Outlook
- 6. Appendix: Mapping with FiberMap


Appendix Mapping procedure (1)

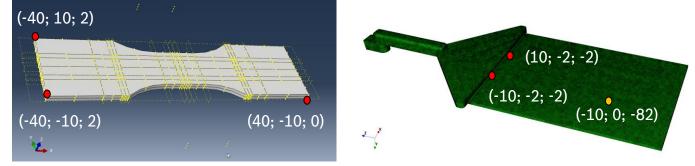
Performing 4a-FiberMap Software

- ► Step 1:
 - Import Process Result Files (.xml and .pat)
 - Choose .xml first
 - Choose .pat second
 - .process file will automatically be generated from FIBERMAP

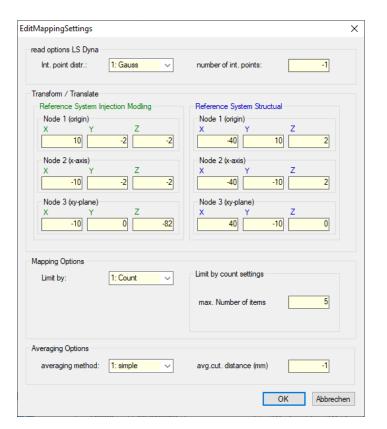
- ► Step 2:
 - Import Structural mesh file (.inp)
 - Result on Element

23 CR/APP2-Strauch | 2020-03-04

© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights

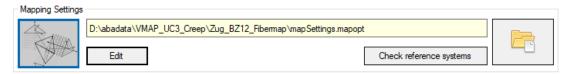


Appendix Mapping procedure (2)

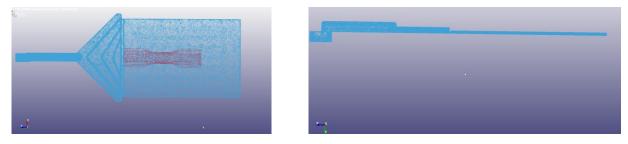

- ► Step 3:
 - Click on New button, if no .mapopt file available
 - .mapopt file will be generated

Enter transformation coordinates between donor- and acceptor mesh

- Scaling (x 1000) of Moldflow Patran Mesh will automatically be performed


24 CR/APP2-Strauch | 2020-03-04

© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.



Appendix Mapping procedure (3)

Click 'Check reference systems' button

LS-PrePost will automatically be started, to check if transformation was correct

- ► Step 4:
 - Disable 'Append materialcard in final output'

Appendix Mapping procedure (4)

- ► Step 5:
 - Choose template file for Table output (Distribution.def)
 - Choose filename of distribution table output

- ► Step 6:
 - Start mapping process by pressing the 'Final Output' Button

26 CR/APP2-Strauch | 2020-03-04

© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights

Appendix Mapping procedure (5)

► Step 7:

• Example of exported distribution table (local coordinate systems element based):

*ORIENTATION, NAME MatOrient Distrl 3, 0 *DISTRIBUTION TABLE, Name=Table1 COORD3D, COORD3D *DISTRIBUTION, Name=Distrl, LOCATION=element, TABLE=Table1 , 1,0,0,0,1,0 1, -0.9872492, -0.002436657. -0.1591638, 0.9999969, -9.837202E-05, 0.00248398 2, -0.9874686, -0.003179486, -0.1577837, 0.9999925, 0.002689872, 0.002790007 3, -0.1553323, 0.999968, -0.007987382, -0.9878609, 0.001689175, -0.00045393284, -0.986009, -0.009690364. -0.1664101. 0.999709. 0.02339846. 0.005876015 -0.1610109, 0.002766561, 5, -0.9869526, -0.0002404615, 0.9999961, -0.0002076956 6, -0.1540155, 0.9999872, -0.004642075, -0.9880647, 0.002722643, -0.002031908 7, 0.004313096, -0.1605366. 0.9999889. 0.001209164. -0.004566433-0.9870204, 8, -0.9868681, 0.002287838, -0.1615117, 0.9999454, -0.01043441, -0.00061045139, -0.9889813, 0.007361836, -0.1478573, 0.9999608, -0.00595818. -0.0065527910, -0.9873084, 0.01675519, -0.1579286, 0.9998583, -0.004261357, -0.01628653

Include written distribution table into Abaqus input deck:

*Solid Section, Elset=BZ12, orientation=MatOrient, material=PBT-GF30

Appendix Mapping procedure (6)

- ► Step 7 (alternative):
 - Include written distribution table into Abaqus/CAE

•								 1			
ibase 🖌 🔶	💠 Create Discrete	e Field						\times	Mod	ule: 🗘 Property	✓ Model: ↓ BZ12_VM
(1)	Name: DiscF	ield-1							17	_	
_L0-50mm								 	σ _E		
arts (1)	Description:							 			
aterials (1)	Location								Ť		
alibrations	Definition: Ele	ements O Nodes								- E JA M	aterial Orientation
ections (1) rofiles									II.		
ssembly	Data Compositio	n								D : (D	Picked)
:ps (3)	Data type: 🔿 Sca	alar 💿 Orientation	O Prescribed con	dition						Region: (P	
Output Requests (1)	Orientation type:	Cartesian	Vindrical O Sobe	erical						2n1 Orientati	on
y Output Requests (5)									E	1.0	
e Points (1)	M Supplied orier	ntation directions a	e defined in part sp	ace						Detter	DiscField-1
Adaptive Mesh Constraints	Default Values								—		
eractions		6	A 13	6 13			6 16		~	Addition	al Rotation Direction
tion Properties	Element ID	Component 1	Component 2	Component 3	Component 4	Component 5	Component 6				
Controls	Defaults	1	0	0	0	1	0				🔾 Axis 2 🔾 Axis 3
ct Initializations ct Stabilizations								 			1
tact Stabilizations straints (2)	Field Data									Addition	al Rotation
ector Sections	Element ID	Component 1	Component 2	Component 3	Component 4	Component 5	Component 6	<u>^</u>	<u> </u>	None 🔍	
	1	-0.9872492	-0.002436657	-0.1591638	0.9999969	-9.84E-05	0.00248398			O Angle:	
Fields	2	-0.9874686	-0.003179486	-0.1577837	0.9999925	0.002689872	0.002790007		<u> </u>	- Angle	
cal Fields (1)	3	-0.9878609	0.001689175	-0.1553323	0.999968	-0.007987382	-0.000453933		+	🖉 🔷 Distrib	ution:
0	4	-0.986009	-0.009690364	-0.1664101	0.999709	0.02339846	0.005876015			×	
	5	-0.9869526	-0.000240462	-0.1610109	0.9999961	0.002766561	-0.000207696		111 1	Stacking	Direction
Fields (1)	6	-0.9880647	0.002722643	-0.1540155	0.9999872	-0.004642075	-0.002031908				
g Rules	7	-0.9870204	0.004313096	-0.1605366	0.9999889	0.001209164	-0.004566433		-+12	Eleme	ent isoparametric directi
ation Tasks	8	-0.9868681	0.002287838	-0.1615117	0.9999454	-0.01043441	-0.000610451				ent isoparametric directi
	9	-0.9889813	0.007361836	-0.1478573	0.9999608	-0.00595818	-0.00655279				
	10	-0.9873084	0.01675519	-0.1579286	0.9998583	-0.004261357	-0.01628653			O Eleme O	ent isoparametric directi
	11	-0.9879265	0.008551678	-0.1546867	0.9998938	0.01033622	-0.01027368		(XYZ)	↑ O Norm	al direction of material
Processes	12	-0.9880462	0.000126465	-0.1541579	0.9998386	0.01773094	-0.002894407	~	(XYZ) +	A.	
										+	
15									±.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ОК

28 CR/APP2-Strauch | 2020-03-04

© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

SVMAP