

TECHNISCHE UNIVERSITÄT CHEMNITZ Faculty of Mechanical Engineering Professorship of Solid Mechanics

Automatic development of material models at large strains using a genetic algorithm

<u>Robert Kießling</u>, Hans Wulf, Richard Gypstuhl, Jörn Ihlemann

17th Technology Day

Werfenweng, 3rd March 2020

Process chain for the development of material models

Motivation

Motivation

- 1. Analysis of experimental data to identify the phenomenology
- 2. Literature review
- 3. Formulation of the material model:
 - Rheological model
 - Formulation of free energy
 - Evaluation of Clausius-Duhem inequality
- 4. Development and implementation of solution procedure
- 5. Identification of material parameters

development of material models

Motivation

- 1. Analysis of experimental data to identify the phenomenology
- 2. Literature review
- 3. Formulation of the material model:
 - Rheological model
 - Formulation of free energy
 - Evaluation of Clausius-Duhem inequality
- 4. Development and implementation of solution procedure
- 5. Identification of material parameters

development of material models

- 1 Material modeling at large strains based on directly connected rheological elements
- 2 Encoding of rheological models

Outline

- 3 Genetic algorithm for the identification of material models
- 4 Results of first identifications
- 5 Concluding remarks

Connection relations of a parallel connection

Connection relations of a series connection

Rheological elements

elasticity | hyperelasticity

$$\underbrace{\widetilde{\underline{T}}}_{\stackrel{\text{z.B.}}{=}} \cdot \underline{\underline{C}} = f\left(\!\left(\underline{\underline{C}}^{-1} \cdot \underline{\underline{C}}\right)\!\right)$$
$$\stackrel{\text{z.B.}}{=} \eta\left(\underline{\underline{C}}^{-1} \cdot \underline{\underline{C}}\right)' + K\left(\underline{\underline{C}}^{-1} \cdot \underline{\underline{C}}\right)^{h}$$

plastic flow

model kit

$$\begin{split} \dot{\varepsilon} &= \chi \operatorname{sign} \left(\sigma \right) \\ \Phi &= \left| \sigma \right| - \left[\sigma_F + R \left(\varphi \right) \right] \\ \chi &\geq 0 \,, \quad \Phi \leq 0 \,, \quad \chi \Phi = 0 \end{split} \left(\begin{matrix} \underline{C}^{-1} \cdot \underline{\underline{C}} \end{matrix} \right)' &= \chi \left(\begin{matrix} \underline{\widetilde{T}} \cdot \underline{C} \end{matrix} \right) \\ \Phi &= \sigma_v \left(\begin{matrix} \underline{\widetilde{T}} \cdot \underline{C} \end{matrix} \right) - \left[\sigma_F + R \left(\varphi \right) \right] \\ \chi \Phi &= 0 \,, \quad \chi \geq 0 \,, \quad \Phi \leq 0 \end{split} \right)$$

Werfenweng \cdot 3rd March 2020 \cdot Robert Kießling

Black Box for material model evaluation and parameter identification

Black Box

evaluation of material models:

- read the rheological model
- recursive evaluation of the connection relations

parameter identification:

- Levenberg-Marquardt algorithm
- parallel execution

Black Box for material model evaluation and parameter identification

- tree encoding for rheological connections

				code	element
ion nodes	connection type	code	-2	0	hyperelasticity
	parallel connection	-2		1	viscous flow
			$\begin{pmatrix} 0 \end{pmatrix}$ -1	2	plastic flow
unct	series connection	-1		3	Maxwell model
ft				4	endochronic element
			-2 <u>2</u> 0 -1 <u>2</u> 1 0		
			list of integers		

TECHNISCHE UNIVERSITÄT CHEMNITZ

Motivation for genetic algorithm

Genetic algorithm - procedure

Genetic algorithm – operators (examples)

- Mutation: ,add to leaf"

Genetic algorithm - procedure

Genetic algorithm - procedure

Validation using synthetic data (viscoelasticity)

- synthetic data:

TECHNISCHE UNIVERSITÄT CHEMNITZ

- identified material models:

7th generation, 34th individual

9th generation, 44th individual

19th generation, 96th individual

Validation using synthetic data (viscoelasticity)

Testing with experimental data

- experimental data:

TECHNISCHE UNIVERSITÄT CHEMNITZ

- identified material models:

29th generation, 144th individual

41st generation, 205th individual

TECHNISCHE UNIVERSITÄT CHEMNITZ

Summary

- realization of a method for the automated identification of material models at large strains
- first validation using synthetic data
- first testing with experimental data

Outlook

- improving the genetic algorithm and the black box
- definition of an experimental investigation procedure
- development of an analyzer of the experimental data

Outlook: Analyzer of the experimental data

Aim:

- preselection of rheological elements and connection structures Idea:
- definition of a testing directive and analysis with neural networks

TECHNISCHE UNIVERSITÄT

Faculty of Mechanical Engineering Professorship of Solid Mechanics

Thank you for your kind attention.

This research was supported by German Science Foundation (DFG) within SPP 1712.

Contact:

Dr.-Ing. Robert Kießling

SPP1712

Chemnitz University of Technology Professorship of Solid Mechanics Reichenhainer Str. 70 09126 Chemnitz Germany

Tel.: +49 (0)371/531-34652 robert.kiessling@mb.tu-chemnitz.de