4a Technology Day 2020 - Plastics on the test rig - Testing and simulation

First results of full-field calibration (FFC) applied to polymer materials

Christian IIg DYNAmore GmbH, Leinfelden-Echterdingen, Germany

> ZIM Zentrales Innovationsprogramm Mittelstand

Werfenweng, 3rd March, 2020

DYNAmore

Who we are

- More than 100 people
- Civil and mechanical engineers, mathematicians, computer scientists, etc.
- Employees from 13 different countries
- Headquarters in Stuttgart
 - Nordic Linköping
 - Swiss Zurich
 - Italia Torino
 - France Versailles
 - USA Dublin, Ohio

Further Offices

- Ingolstadt
- Dresden
- Langlingen (Wolfsburg)
- Berlin

Customer-dedicated Offices

- Sindelfingen (Daimler AG)
- Weissach (Porsche)
- Ingolstadt (Audi)
- Gothenburg (Volvo)

- Motivation
- Strain calculation in ARAMIS
- Implementation of FFC with LS-OPT
- Application of the method
 - Validation
 - Sheet metal CR210IF
 - PC/ABS
- Summary & conclusions
- Outlook

Motivation

- Strain calculation in ARAMIS
- Implementation of FFC with LS-OPT
- Application of the method
 - Validation
 - Sheet metal CR210IF
 - PC/ABS
- Summary & conclusions
- Outlook

Strain measurement

- Classical scheme of characterizing the yield behavior of a material
 - Tensile test delivers engineering stress vs. strain curve for a specific reference length.
 - Identification of material parameters via reverse engineering strategy, with which the test is simulated and the resulting stress strain curves were compared to the testing results.

- Drawbacks:
 - The area with the highest strains, the localization area, is not considered explicitly.

Strain localization in DIC

- Traditional method for the evaluation of tensile tests
 - Engineering stress-strain curve with a predefined reference length (here: $I_0 = 9$ mm)

Strain localization in DIC

- Traditional method for the evaluation of tensile tests
 - Engineering stress-strain curve for different reference lengths

Concept

Motivation

- Strain calculation in ARAMIS
- Implementation of FFC with LS-OPT
- Application of the method
 - Validation
 - Sheet metal CR210IF
 - PC/ABS
- Summary & conclusions
- Outlook

ARAMIS v6

ARAMIS v6

Reference length of the strain calculation

ARAMIS v6 vs ARAMIS Professional

The reference length l_0 is twice the facet point distance

The reference length l_0 in any direction is determined by the mean length of the hexagon. (0.75*double_facet_point_distance)

ARAMIS output – force vs. true strain

[]

- Motivation
- Strain calculation in ARAMIS
- Implementation of FFC with LS-OPT
- Application of the method
 - Validation
 - Sheet metal CR210IF
 - PC/ABS
- Summary & conclusions
- Outlook

Implementation of FFC with LS-OPT

New interface in LS-OPT

Implementation of FFC with LS-OPT

Implementation of FFC with LS-OPT

New interface in LS-OPT

Alignment of simulation and experiment

Possibility to visualize the alignment in LS-PrePost

Selection of the variables from the simulation to be compared

Choose mapping method between test and simulation

	Edit multipoint history		
ame			
Sim_X_Strain			
Location ARAMIS Coordinate File	ARAMIS multihistory Aramis_Force_X_Stra	Align test and simulation geometry New alignment 00_XY	
Parts to be included All Parts List of parts:	Results Type O Ndv O Stress	Component O L_surf_plastic_strain U_surf_xy_strain O L_surf_min_princ_strain O U_surf_plastic_strain U_surf_vz_strain O L_surf_effective_strain	

- Motivation
- Strain calculation in ARAMIS
- Implementation of FFC with LS-OPT
- Application of the method
 - Validation
 - Sheet metal CR210IF
 - PC/ABS
- Summary & conclusions
- Outlook

Application

- Validation of the anisotropic MAT_036 constitutive model
 - Assumptions in the simulation model of the validation:
 - Anisotropic constitutive model: *MAT_036 (*MAT_3-PARAMETER_BARLAT)
 - Yield locus parameters assumed constant (not optimized at present)
 - Two parameters for the yield curve extrapolation
 - Damage and failure are not considered
- FFC based on experimental data: sheet metal CR210IF, PC/ABS
 - Assumptions in the simulation model of CR210IF:
 - The same as for the validation
 - Assumptions in the simulation model of PC/ABS:
 - Isotropic constitutive model: *MAT_024 (*MAT_PIECEWISE_LINEAR_PLASTICITY)
 - Six parameters for the yield curve
 - Damage and failure are not considered

Yield curve generation – Metal

Parametrization of the yield curve

Direct <u>calculation</u> of the yield curve until A_{α}

$$\sigma_y = \sigma_{eng}(1 + \varepsilon_{eng})$$

$$\varepsilon_{pl} = \ln(1 + \varepsilon_{eng}) - \frac{\sigma_{eng}}{E}$$

Extrapolation from A_q with Hockett-Sherby

$$\sigma_y(\varepsilon_{pl}) = A - B \, e^{(-c \, \varepsilon_{pl}^n)}$$

 C^1 -continuity at A_g :

Reduction of the function by two variables

Remaining variables *c* and *n* are chosen as optimization variables

Validation of method for MAT_BARLAT

- Purely virtual: Target strain field generated from simulation.
- Optimization strategy: Feed-forward neural network (FFNN)

Validation of method for MAT_BARLAT

Optimization results with FFNN for 0°

Validation of method for MAT_BARLAT

Optimization results with FFNN for 0°

- Motivation
- Strain calculation in ARAMIS
- Implementation of FFC with LS-OPT
- Application of the method
 - Validation
 - Sheet metal CR210IF
 - PC/ABS
- Summary & conclusions
- Outlook

Input: Curves from experiments w.r.t. the rolling direction (CR210IF)

Optimization strategy: Sequential Response Surface Method (SRSM)

• Comparison of the strainfields in LS-PrePost

Comparison of the strainfields in LS-PrePost

max=0.000298637, at node# 713

X-strains

comp_00_Force_X_Strain: discrepancy x-component (Dynamic Time Warping map) Time = 0 Contours of diffx min=-0.00183902, at node# 70

- Motivation
- Strain calculation in ARAMIS
- Implementation of FFC with LS-OPT
- Application of the method
 - Validation
 - Sheet metal CR210IF
 - PC/ABS
- Summary & conclusions
- Outlook

Yield curve generation – PC/ABS

- First optimization run based on an a single stress strain curve
- Input from the experiment:

Result:

- First optimization run based on an a single stress strain curve
- Input from the experiment:

- Second optimization run based on an a single stress strain curve + FFC
- Input from the experiment:

Result:

- Second optimization run based on an a single stress strain curve + FFC
- Visualization of the differences in the y-strains:

Limitations

- Possible reasons of deviations
 - Material model:
 - Varying R-value
 - No damage
 - Variables \rightarrow limited vs. complex
 - Noise
 - Strain rate dependency
 - Heat evolution
 - Surface measurement
 - Shell assumptions

- Motivation
- Strain calculation in ARAMIS
- Implementation of FFC with LS-OPT
- Application of the method
 - Validation
 - Sheet metal CR210IF
 - PC/ABS
- Summary & conclusions
- Outlook

Summary & conclusions

- Clearly, yield curve extrapolation is depending on reference length.
- Hence many possible solutions for global force vs. displacement behavior.
- Implementation of FFC interface in LS-OPT to facilitate application of method.
- Method was validated with numerical, artificial data for Barlat-model.
- Method was applied to measured data of CR210IF and PC/ABS.
- It can be concluded that the approach delivers sufficiently close results w.r.t. the posed question:
 Keep in mind a spatial model as well a constitutive model are applied to represent reality.
 - The limits of the classical discretization with shells may sometimes be closer than expected!

Outlook

- Increasing the number of parameters to be optimized (metal)
 - More complex approach for yield curve extrapolation.
 - 2-3 additional parameters for the yield locus.
- Investigation of different specimen geometries may be worthwhile

The multi-point history option is available in LS-OPT 6.0

The DYNAmore – Material Competence Center

Contact: DYNAmore GmbH Prof. Dr.-Ing. André Haufe Industriestr. 2 70565 Stuttgart fon: +49 (0)711 / 45 96 00 - 17 email: andre.haufe@dynamore.de

Our Services:

- Experimental material characterization
- Validation of material cards
- Extended parameter identification
- Consulting for material model selection
- Your benefits:
 - Time and cost efficient
 - Comprehensive knowledge

Your questions, please

