Polymer Engineering and Science Montanuniversitaet Leoben

WERKSTOFFKUNDE UND PRÜFUNG DER KUNSTSTOFFE

Accelerated Creep Characterization of High Density Polyethylene by the Stepped Isothermal Method

Gerald Pilz and Stefan Wurzer

Otto Glöckel-Straße 2, 8700 Leoben, Austria +43 3842 402 2101 wpk@unileoben.ac.at www.kunststofftechnik.at

Content

- Creep behaviour and testing
- Stepped Isothermal Method SIM
- Experimental

Results

- Creep strain curves by SIM
- Additional investigations DSC and DMA
- Master curves by SIM
- Comparison of SIM results to conventional creep curves

Conclusions

Creep behaviour and testing

- Stable morphology within the temperature range of testing
- Loading within the linear-viscoelastic range
- Limited temperature range according to the underlaying molecular relaxation process

Stepped Isothermal Method SIM

Basic test procedure

Curve correction referring to thermal expansion

Virtual starting times => separated creep curves

virtual time log (t-t´)

Conventional time temperature superposition TTSP

Experimental

Material

High density polyethylene (HDPE) Density: 0.953 g/cm³ Young s modulus: 1.2 GPa

Specimen preparation

bar specimens (30 x 4 x 2 mm)

cut out from injection moulded plates (130 x 100 x 2 mm)

perpendicular to the flow direction in the lower section of the plates

Experimental

Test parameters for SIM/Creep-Testing

Loading mode: Clamping length: Loading stress:

Temperature steps:

Dwell time:

tensile, bar specimens 18.5 mm

1 and 2 MPa

steps: 30, 40, 50, 60, 70, 80 °C

180 min

Dynamic Mechanical Analyzer MCR 702 MultiDrive (Anton Paar, GmbH, Austria)

Time

for specimens without preconditioning

for specimens without preconditioning

for specimens with thermal pre-treatment

for specimens with thermal pre-treatment

Differential Scanning Calorimetry – DSC

Cystallinity for the various temperature steps

Temperature

DSC Results

Cystallinity for the various temperature steps

DMA with increasing stress amplitude

Device:	Dynamic Mechanical Analyzer MCR 702 MultiDrive (Anton Paar, GmbH, Austria)
Loading mode:	tensile, bar specimens, cross-sectional area: 2 x 2 mm
Clamping length:	18.5 mm
Loading:	stress amplitude 0.1 MPa to 8 MPa
Temperatures:	30, 40, 50, 60, 70, 80 °C

DMA Results

DMA with increasing stress amplitude

Definition of virtual starting times

Time-temperature superposition

Curve adjustment

Vertical curve shift to account for

- Non-linear viscoelasticity
- curve gaps in the heating phases

CREEP STRAIN - Influence of thermal pre-treatment

Limited reproducability

due to:

Morphological differences of the various specimens

Morphological changes during the creep tests

CREEP STRAIN - Influence of thermal pre-treatment

Reduced creep tendency for annealed specimens due to: physical ageing

effects

CREEP MODULUS - Influence of thermal pre-treatment

Deviations in creep modulus due to: Morphological differences between the annealed an the unconditioned state

CREEP MODULUS - Influence of thermal pre-treatment

Deviations in creep modulus due to: Morphological differences between the annealed an the unconditioned state

Noticeable influence of stress with decreased modulus level at 2 MPa

Comparison of SIM results to conventional creep curves

Acceptable agreement of SIM master curves and measured creep curves

CREEP STRAIN

particularly for the annealed material state

at least for a limited time range up to 8 days

Comparison of SIM results to conventional creep curves

Corresponding results for creep modulus **Deviating creep** tendencies between the various material states "annealed" vs.

"unconditioned"

- SIM provides an efficient method for long-term estimation of the creep behaviour: 1 day measurement to creat a master curve for service oriented long-term prediction.
- Reliability of the resulting master curves is dependent on:
 - Material parameters: morphology, thermo-mechanical properties, range of linear viscoelasticity, thermal conductivity
 - Experimental parameters: particularly heating rate for temperature steps and the SIM procedure (definition of virtual starting times, curve shift factors)
- The current results for HDPE show plausible creep modulus master curves created by SIM in good agreement with corresponding conventional creep measurements.

Many thanks to...

Stefan Wurzer, Chair of Materials Science and Testing of Polymers, Montanuniversitaet Leoben, A.

Alexander Troiss, Anton Paar GmbH, Graz, A.

Matthias Morak, Polymer Competence Center Leoben, A.

... and the Team at the Chair of Materials Science and Testing of Polymers MONTANUNIVERSITAET LEOBEN

