4a Technology Day 2020

Material Characterization and Experimental Validation of UD CFRP Laminate Components using LS-DYNA®

NTT Data NT DATa

T. Nishihara, C. Kawamura, S. Kanemoto

NTT Data Trusted Global Innovator NTT DATA Group

JSOL ICT Service Coordinator

- Company name: JSOL Corporation
- Established: July,2006
- Capital: 5 billion yen
- Employees:
- 1,200
- Shareholder: NTT DATA Corporation
 The Japan Research Institute, Limited
- Offices: Tokyo Head Office Osaka Head Office Nagoya Branch Offices
- Business Field

Industrial Field Solution

Financial field Solution Public Sector Solution

Technology

テクノロジー

コンサルティング

Consulting

Competence Outsourcing

Project Management プロジェクトマネジメント

Outline

- 1. Background & Motivation
- 2. FE Modeling
- 3. Material Characterization
- 4. 1st Experimental Validation
- 5. Review and Improvement of FE Modeling
- 6. 2nd Experimental Validation
- 7. Summary & Future Work

Outline

1. Background & Motivation

- 2. FE Modeling
- 3. Material Characterization
- 4. 1st Experimental Validation
- 5. Review and Improvement of FE Modeling
- 6. 2nd Experimental Validation
- 7. Summary & Future Work

Background of the Study

Joint research project with Mazda and JSOL

Mazda is interested in CFRP as one of the break-through technologies that achieves a high level of downsizing, weight reduction and safety.

Crash Simulations for Passive Safety

Crash simulation is especially important in automotive design because of the strict regulations which specify passive safety requirements.

The numerical predictions of bending fracture and axial crushing of a composite structure are both of great interest with CFRP composites being increasingly applied in car design.

Requirements and Motivation

Requirements for Numerical Simulation

Motivations of this Study

• To validate the simulated failure mode by FE simulation when design parameters, including laminate configuration, are changed.

Outline

1. Background & Motivation

2. FE Modeling

- 3. Material Characterization
- 4. 1st Experimental Validation
- 5. Review and Improvement of FE Modeling
- 6. 2nd Experimental Validation
- 7. Summary & Future Work

Laminate Modeling

In terms of modeling that can be calculated by realistic computational costs, we selected the multi-layered shell model.

Intra-lamina Modeling

Material model in each ply needs to treat the CFRP as an anisotropic homogeneous material. *MAT_054/058

$Copyright @ 2020 \quad JSOL \ Corporation. \ All \ Rights \ Reserved.$

FE Modeling

We selected in the project.

Outline

- 1. Background & Motivation
- 2. FE Modeling

3. Material Characterization

- 4. 1st Experimental Validation
- 5. Review and Improvement of FE Modeling
- 6. 2nd Experimental Validation
- 7. Summary & Future Work

Toray 3252S-10 (T700/2592)

*MAT_LAMINATED_FRACTURE_DAIMLER_CAMANHO (262)

Toray 3252S-10 (T700/2592)

*MAT_LAMINATED_FRACTURE_DAIMLER_CAMANHO (262)

Compressive damage parameters in fiber direction

Tensile damage parameters in fiber direction

Toray 3252S-10 (T700/2592)

*MAT_COHESIVE_MIXED_MODE (138)

Toray 3252S-10 (T700/2592)

*MAT_COHESIVE_MIXED_MODE (138)

Outline

- 1. Background & Motivation
- 2. FE Modeling
- 3. Material Characterization

4. 1st Experimental Validation

- 5. Review and Improvement of FE Modeling
- 6. 2nd Experimental Validation
- 7. Summary & Future Work

Test setup of 4-point bending of UD laminate beam

Four-point bending test was performed quasi-static (20 mm / min) using a universal testing machine.

- Location: Mazda Motor Corporation
- Equipment: Universal testing machine UH200XR (Shimadzu)

Dimension of UD laminate beam

Specimens with two types of laminated configuration were tested: quasi-isotropic and 0° main laminates.

Laminated configuration

- (1) quasi-isotropic laminate $[0/45/90/-45]_{3S}$
- (2) 0° main laminates $[0/90/90/(0)_9]_S$

Experimental results

[0/45/90/-45]_{3S}: Quasi-Isotropic laminate

From 10mm displacement, we obtained the crack propagated from under the impactor in the circumferential direction.

The fracture occurs on the surface at the edge of the depression, and it propagates in the circumferential direction

Model Overview

of layer : 24

- Mesh size : 1mm
- Total # of elem. : 4,069,120
 - shell: 2,067,200
 - cohesive : 2,001,920
- Time step : 3.0E-8 s
- LS-Dyna Version: mpp s dev
 - Shell ELFORM=16
 - CZM ELFORM=20
- Velocity of impactor
 - Test (quasi-static) : 20mm/min
 - Simulation : 2.2m/s
- Computational Cost : 26 hours by 128 cores with MPP

Comparison between Exp. and Sim.

QI : [0/45/90/-45]_{3S} (# of layer : 24)

Force – Disp. experiment simulation Force [kN] Stroke [mm]

We can see good agreement with the load response obtained in the experiment, where the load gradually decreases after the maximum load is shown around 8kN.

Comparison of Crack and Damage Progress

QI : [0/45/90/-45]_{3S} (# of layer : 24)

We can confirm that the simulated initiation point and the crack propagation path are in good agreement with the bending experiment.

Experimental results

 $[0/90/90/(0)_9]_S$: 0 degree main laminate

Cracks propagated in the longitudinal direction and a significant decrease in load were observed.

Experimental results

Comparison between quasi-Isotropic and mainly 0 degree laminates

Different failure modes were obtained depending on the laminate configuration.

Quasi-isotropic: fracture in circumferential direction

0 ° main laminate: fracture in longitudinal direction

Comparison between Exp. and Sim.

0M : [0/90/90/(0)₉]_S(# of layer : 24)

Crack in longitudinal direction is observed in experiment

Depression under impactor and fracture progresses in the circumferential direction

Simulated failure mode and load response cannot capture the experimental response. The rapid load drop in the experiment cannot be reproduced in the simulation.

Outline

- 1. Background & Motivation
- 2. FE Modeling
- 3. Material Characterization
- 4. 1st Experimental Validation

5. Review and Improvement of FE Modeling

- 6. 2nd Experimental Validation
- 7. Summary & Future Work

Review point 1: Intra-laminar modeling

Specimen is photographed with X-ray CT to analyze the inside fractures.

• SHIMADZU inspeXio SMX-225CT FPD HR

QI: [0/45/90/-45]_{3S}

0M : [0/90/90/(0)₉]_S

Review point 1: Intra-laminar modeling

To confirm the cause of transversal cracks observed in 0M, a detailed model with fine solid elements is conducted to confirm stress/strain distributions

Review point 1: Intra-laminar modeling

According to the results, the cause of the initial fracture point in 0M is out-of-plane transverse shear in the lower 0 ° layer.

Experiment X-CT

Detailed solid model principle strain vectors

Improvement point 2: Intra-laminar modeling

To represent the transverse shear crack, transverse damage was added to *MAT_262.

Review point 2: Inter-laminar modeling

The delamination occurs before the transverse fracture within 0° layers.

Damage of Cohesive Elem.

and transverse crack is observed in 0 deg. layers.

Improvement point 2: Inter-laminar modeling

Some literatures reported that the fracture toughness is larger when delamination propagates in the 90//90 direction than when propagating in the 0//0 direction.

The user defined cohesive model developed takes into account anisotropic interlaminar fracture toughness depending on the crack propagation angle for fiber orientation.

Improvement point 2: Inter-laminar modeling

Mode I opening direction is calculated from in-plane four integration points. Mode II direction is calculated from shear deformations within each integration point.

Review point 3: Laminate modeling

The upper surface is deformed so that the cross section does not open in the simulation.

Review point 3: Laminate modeling

Numerical study

2 thin shell layers are connected by

Review point 3: Laminate modeling

Numerical study

Improvement 3: Laminate modeling

Cohesive elements in the cross section of the half cylinder (left below) are inclined, not rectangular, so that the bending rigidity might increase in this section.

Since the numerical instability could not be overcome in the component model with tied contact and zero thickness CEs, tentatively thick shells and zero thickness shells will be used in 2nd validation model.

Outline

- 1. Background & Motivation
- 2. FE Modeling
- 3. Material Characterization
- 4. 1st Experimental Validation
- 5. Review and Improvement of FE Modeling
- 6. 2nd Experimental Validation
- 7. Summary & Future Work

Model Overview

of layer : 24

- Mesh size : 1mm
- Total # of elem. : 4,069,120
 - Thick-shell: 2,067,200
 - cohesive : 2,001,920
- Time step : 5.0E-9 s
- LS-Dyna Version: mpp s Dev (enhanced MAT_262, implemented UCZM)
 - Thick-Shell ELFORM=1
 - CZM ELFORM=19 (zero-thickness)
- Velocity of impactor
 - Test (quasi-static) : 20mm/min
 - Simulation : 2.2m/s
- Computational Cost : 82 hours by 128 cores with MPP

Simulated Failure Mode by Improved Model

0M : [0/90/90/(0)₉]_S(# of layer : 24)

Longitudinal crack growth and deformation in which the cross section opened.

Simulated Load Response by Improved Model

0M : [0/90/90/(0)₉]_S(# of layer : 24)

Fracture in longitudinal direction

Improved CAE model in 2nd validation can capture the failure mode and load response observed in experiments.

Outline

- 1. Background & Motivation
- 2. FE Modeling
- 3. Material Characterization
- 4. 1st Experimental Validation
- 5. Review and Improvement of FE Modeling
- 6. 2nd Experimental Validation

7. Summary & Future Work

Summary & Future Work

Summary

- Confirmed that different failure modes occur depending on the lamination configuration of UD laminate beams in four-point bending experiments.
- Analyzed the fracture mode by X-ray CT and detailed solid model.
- Represented the change in the failure mode due to the laminated configuration by improved FE model.

Future Work

- Characterization of direction-dependent inter-lamina fracture toughness.
- Improvement of numerical instability in the model with tied contact and zerothickness cohesive elements.
- Validation for different cross sections and laminate configurations.

Thank you for your attention!