3D printing materials LUVOCOM® 3F as an cost effective alternative to

overmolding in hybrid composites-thermoplastic structures

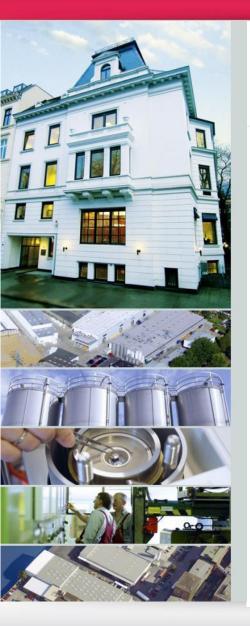
4a Technologietag

Dr.-Ing. Jan Sumfleth

26.-27. Februar 2019

INSTITUT FÜR WERKSTOFFTECHNIK UND KUNSTSTOFFVERARBEITUNG

Karin Brändli Hedlund, Prof. Dr.-Ing. Frank Ehrig


www.lehvoss.com

Agenda

- Introduction to Lehvoss Group
- Thermoplastic compound expertise
 - LehVoss 3F strategy
- Why LUVOCOM 3F for "overmolding"?
 - Fundamentals aspects of LUVOCOM 3F
 - Viscosity and solidification
 - Effect of fillers, e.g. carbon fiber
 - Printing of LUVOCOM 3F on organosheets
- Excursion: Showcase of hybrid structures with LUVOCOM 3F and thermoset composites

The LEHVOSS Group

- Lehmann&Voss&Co. established 1894
- Family-owned business in 4th generation
- 595 employees*
- 21 subsidiaries world-wide
- 365 €MM revenue*
- 6 business units:

Trading of specialty chemicals Production of specialty polymers

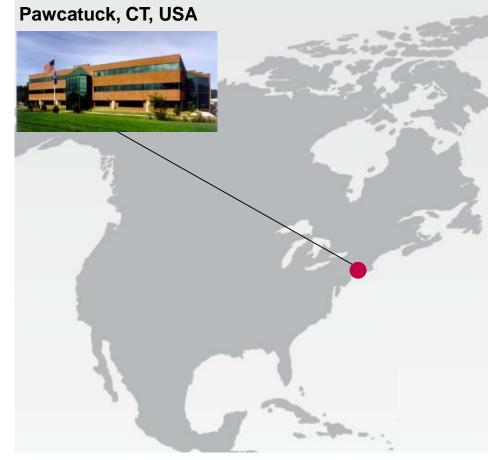
*LEHVOSS Group, without joint ventures

The LEHVOSS Group – Your Partner in the Polymer Industry

BU Custom	BU Additives & Concentrates		
High Performance Compounds	3D Printing Materials	Technical Compounds WMK Plastics	Functional Masterbatches

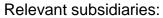
- 4 business teams with sales, marketing & development
- 45+ years of experience in compounding
- >200 employees
- 4 production sites: 2x Germany, USA and China
- 20 extrusion lines with a capacity of 25,000 MT

Business Unit CPM Region Europe



Highlights

- Company headquarter in Hamburg, Germany
- ISO 9001 certified production site in Hamburg
- Central product development, engineering, pilot plant and analytical testing facility
- Business development organization with sales offices in key countries
- WMK, an independent business team:
 - ISO 9001 certified production site in Solingen, Germany
 - Sales organization in Germany & Austria



Business Unit CPM Region North America

Highlights

- Regional headquarter in Connecticut (LEHVOSS North America)
- ISO 9001 certified production site since 2012 with comparable capabilities as in Europe
- Established contract manufacturing (Performance Compounding Inc.) with analytical testing facility
- Experienced business development organisation

PERFORMANCE Compounding

Business Unit CPM Region Asia

Highlights

- Regional headquarter in Shanghai (LEHVOSS Shanghai), sales office in Guangzhou and subsidiary in South Korea (LEHVOSS Korea)
- Business development organization in China and South Korea
- Production, engineering and testing facility in China (LEHVOSS Kunshan)

CUSTOMIZED POLYMER MATERIALS

LEHVOSS Group - Customized Polymer Materials

Customized Polymer Materials

Custom	er Needs		nd Material opment	Compound	ding
Polymers	(examples)		Reinforcement	Additives	
High Performance Polymers	PES, PEI, PSU, PPSU TI Fluropo		Carbon fibers X carbon fibers Glass fibers Glass flakes Glass spheres	PTFE Graphite Silicone oil Nano-additives CNT	 Injection molding Extrusion Compression molding
Engineering Polymers	PC, PPE-PS, PPE-PA TPU,	PA 6, PA 66, PA 12, PA 6.10, PET, PBT, POM, PK TPE	Aramid fibers Mineral fibers Minerals <i>Others</i>	Metals Pigments Flame retardents Ceramics UV stabilizers	 Powder coating 3D printing
Standard Polymers	ABS	PP, PE-LD, PE-HD		Flow enhancers Others	
	Amorphous	Semi-crystalline			

Product Highlights in a Nutshell

Stiffness 52 GPa Strength 530 MPa

STRUCTURAL

- Withstand > 500 sterilization cycles
- Continuous use temperature 320°C

RESISTANT

Wear < 10⁻⁸ mm³/Nm (28 m/s / 30 MPa)
Coefficient of friction 0.04

TRIBOLOGICAL

- Broadest color range for PEEK compounds
- Glossy surfaces for high strength materials

- Thermal conductivity 40 W/mK
 Electrical resistance 10^{-0.5} Ω
- CONDUCTIVE

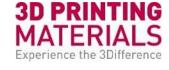
Heavy 5 g/cm³
Light 0.9 g/cm³

- Detection of 1 mm particle size
- Shielding effectiveness 76 dB @ 500 MHz

Ð

PROTECTION

- 50 % shorter annealing time for parts
- 3D printing of high-temperature polymers at room temperature
- Separation stable EMI materials



Customized Solutions for Industrial 3D-Printing – Materials, Technology and Processing

3D Printing Materials

Customized Solutions for Industrial Production


LUVOCOM[®] 3F Materials

- Made for extrusion based processes
- Product: pellet / filament
- Simple geometries multi-material
- Composite materials

LUVOSINT® Materials

- Made for powder fusion processes
- Product: powder
- 100 % design freedom
- Nano-filled materials

Product Overview

Material	Polymer	Modification	Color	Further information
LUVOCOM [®] 3F PEEK 9581 NT	PEEK	Modified neat	Natural beige	
LUVOCOM [®] 3F PEEK CF 9676 BK	PEEK	15% CF	Black	
LUVOCOM [®] 3F PEEK GF 9761 BK	PEEK	15% GF	Black	
LUVOCOM [®] 3F PEEK GR 9710 BK	PEEK	Thermally conductive	Black	Not for filament production

LUVOCOM [®] 3F PA ^{ht} 9825 NT	PAHT	Modified neat	Natural white	
LUVOCOM [®] 3F PA ^{ht} 9875 NT	PAHT	Modified neat	Natural white	Minimized water uptake
LUVOCOM [®] 3F PA ^{HT} 9936 BK	PAHT	Modified neat	Black	Optimized surface appearance
LUVOCOM [®] 3F PA ^{HT} CF 9742 BK	PAHT	15% CF	Black	
LUVOCOM [®] 3F PA ^{HT} CF 9891 BK	PAHT	15% CF	Black	Minimized water uptake
LUVOCOM [®] 3F PA ^{HT} CF 9743 BK	PAHT	25% CF	Black	Not for filament production
LUVOCOM [®] 3F PA ^{HT} GK 9874 NT	PAHT	10 % glass spheres	Natural white	
LUVOCOM [®] 3F PA ^{HT} 9826 BK	PAHT	Tribological	Black	

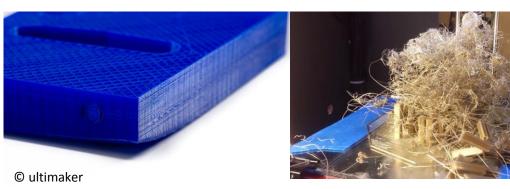
_UVOCOM® 3F PET CF 9780 BK PET 15% CF Black

Further products are under development. \rightarrow PPS, TPU, PP, PP/CF

Materials for Fused Filament Fabrication

Additive manufacturing solutions

Fundamentals and Basics

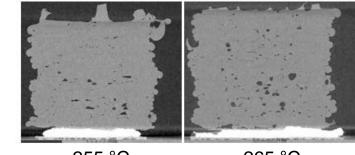


Current FFF Printing Challenges

- Standard materials being used (injection/extrusion moulding grades)
- Poor processability (low repeatability, warpage, high scrap ratio)
- High anisotropy
- No engineering/HT polymers available
- Poor surface finishing

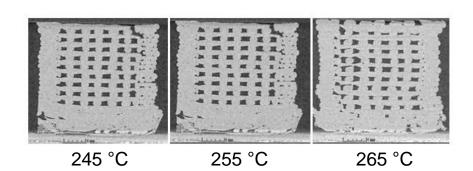
Our LUVOCOM 3F strategy

- Tailored polymers for 3D Printing (reduced anisotropy, enhanced printability)
- Broader material choice (high-performance, composites, functional)
- Focus on industrial applications
- 35 years LUVOCOM experience is in LUVOCOM 3F



LUVOCOM 3F PA^{HT} – Micro CT Analysis*

LUVOCOM 3F PAHT



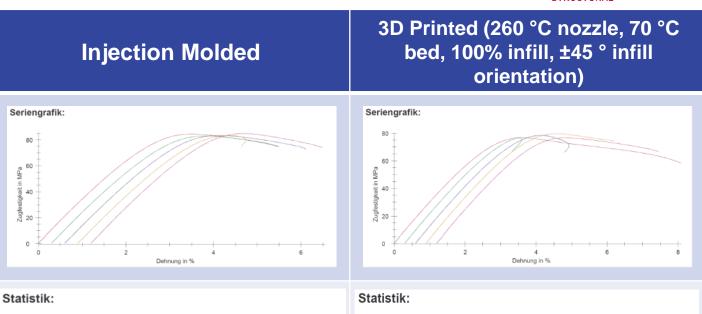
255 °C

265 °C

Printing Temperature	Porosity Measurement 1	Porosity Measurement 2
245°C	28.90%	27.73%
255°C	22.28%	22.08%
265°C	26.64%	26.45%

Printing Temperature	Porosity Measurement 1	Porosity Measurement 2
255°C	2.08%	2.02%
265°C	3.42%	4.6%

Standard PA6


LUVOCOM 3F PA^{HT} 9875 NT – Competitive Advantage

STRUCTURAL

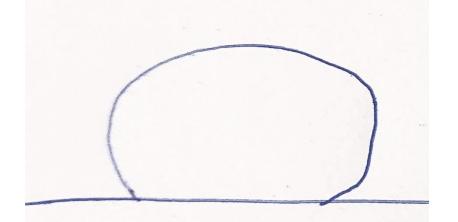
No Printing Pattern in break area, why is that?

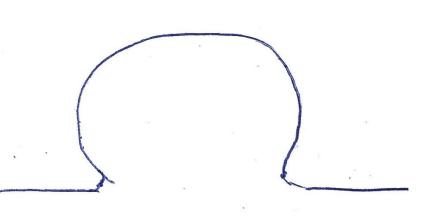
- Interdiffusion
- Right viscosity 2)
- Reasonable solidification time 3)
- Right crystallisation after solidification 4)

Serie Zugfestigkeit Dehnung bei Fmax Zugmodul Et Bruchspannung Bruchdehnung GPa MPa n = 5 MPa 0/

11 - 0	IVII G	70	ora	IVII G	70	
x	83,77	3,50	3,47	74,11	5,04	
s	0,80	0,03	0,10	0,95	0,74	
V [%]	0,96	0,93	2,75	1,29	14,62	

Serie	Zugfestigkeit	Dehnung bei Fmax	Zugmodul Et	Bruchspannung	Bruchdehnung
n = 5	MPa	%	GPa	MPa	%
x	77,62	3,53	3,20	66,48	5,37
S	1,31	0,18	0,09	5,80	1,94
ν [%]	1,69	5,05	2,88	8,73	36,10




1) Adhesion vs Interdiffusion

Adhesion

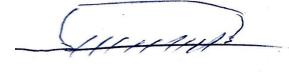
Particle is bound by adhesion force

- Easy to achieve
- High precision
- Poor mechanics
- No thermal endurance

Interdiffusion

Particle has fused by interdiffusion

- Good mechanical Performance
- High thermal endurance
- Propper wetting essential
- Extended energy needed



2) Viscosity and print quality

Low viscosity

High MFI at Tm +20 $^{\circ}$ C

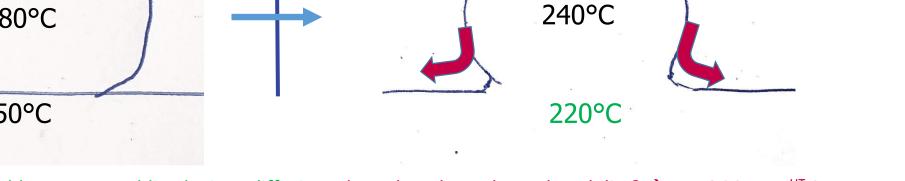
- Good wetting
- Low Warp
- Good interdiffusion
- Poor precision
- Support is essential

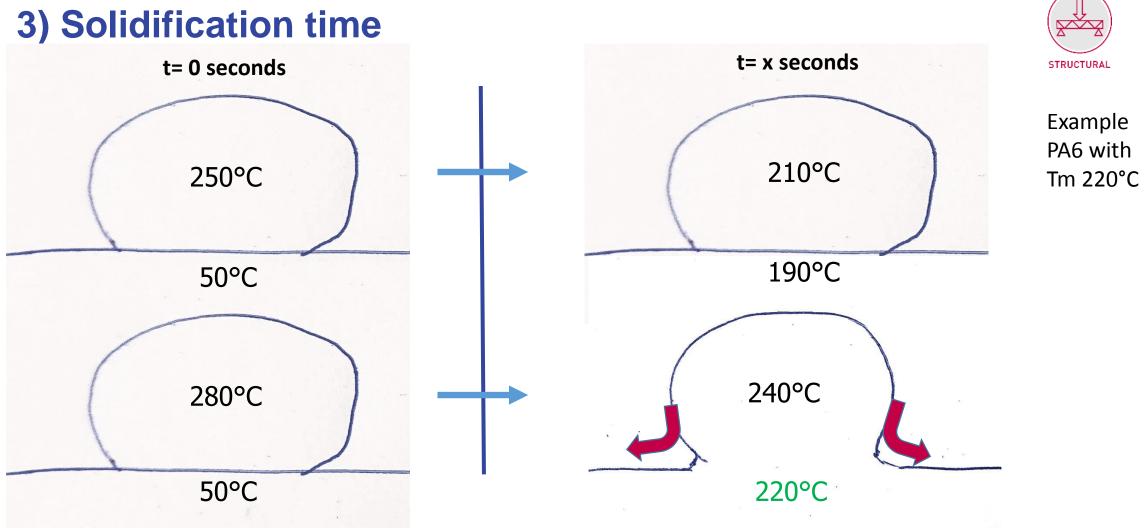
<u>right viscosity</u>

Intermediate MFI at Tm +20 $^{\circ}$ C

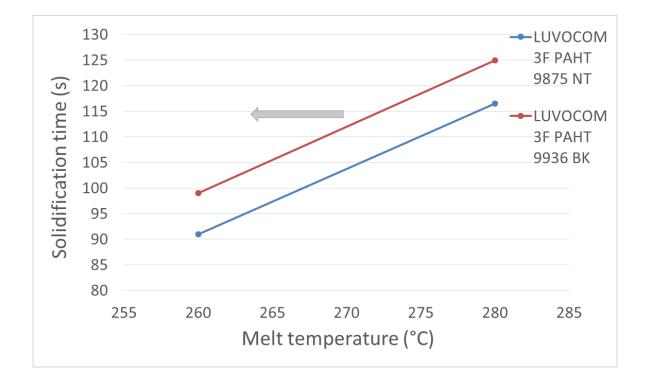
- Good wetting
- Support not essential
- Good Precision
- Interdiffusion slow but still sufficient

High viscosity


low MFI at Tm +20 $^\circ~$ C


- High Precision
- High design freedom
- Poor wetting
- Interdiffusion too slow
- Poor mechanical properties

Sufficient energy enables proper welding by interdiffusion – but what about the melt stability? \rightarrow LUVOCOM PA^{HT} 3F



LV/

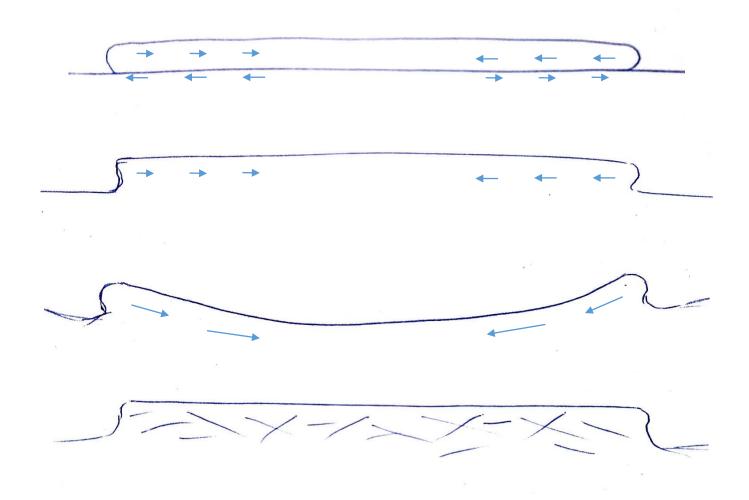
LUVOCOM 3F formulation technology: increase in solidification time

Benefits

• Better welding and lower warping at lower temp

→ Reduction of 10°C possible

- Enabling bigger process window
- Enabling high flow materials such as PPS to interdiffuse



STRUCTURAL

4) Crystallisation after solidification

Adhesion

Shearing /stress cracks

Newly fused material

slow crystallization:

stress can be compensated by relaxation if applied slowly

fast crystallization:

stress cannot be compensated leading to warpage

special additives might be used as "shear stress relief"

In any case filler help reduce warpage by reducing CTE and suppressing shrinkage stress

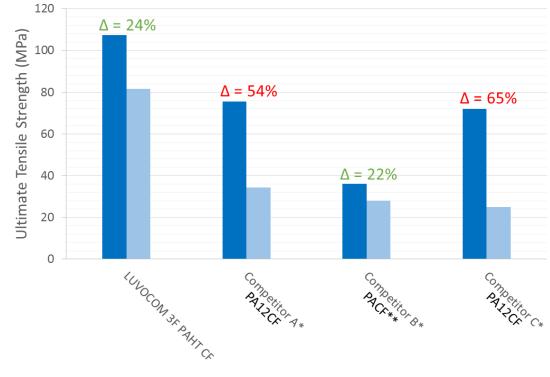
LUVOCOM 3F PAHT with Carbon Fibers

Carbon fibre reinforced high temperature PA (T_m = 250°C)

- PA6 similar mechanical properties but...
- ...without moisture issues
- ...without warpage issues

Carbon fibre are actually reinforcing

- 170 MPa strength
- 15.5 GPa Young's modulus



LUVOCOM 3F PAHT CF - Benchmark vs Market

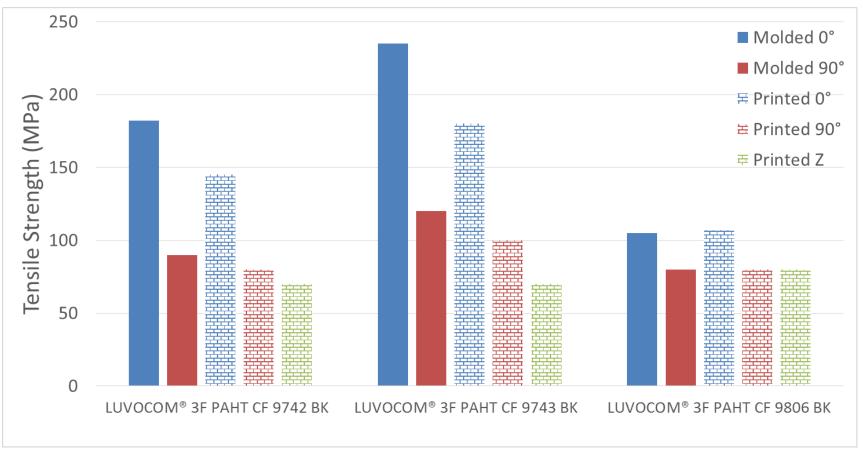
High performance level

 LUVOCOM 3F better in Z as competitors in X direction

■ 3D Printed Specimen - X Axis ■ 3D Printed Specimen - Z Axis

* All mechanical data was taken from technical datasheets available at the manufacturer's website.

** The type of PA is not specified by the manufacturer



LUVOCOM 3F PA^{HT} CF - Mechanical Properties

Injection molding vs. 3D Printing

Various grades

- 9742 (CF15): ca. 20% Offset
- 9743 (CF25): ca. 20% Offset
- 9806 (CF10): no Offset

LUVOCOM[®] 3F

Additive manufacturing solutions

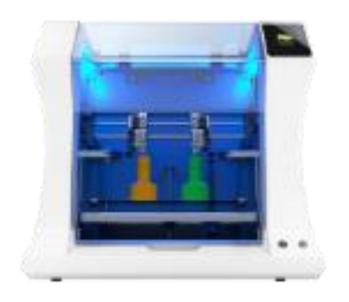
Materials for Hybrid Overmoding replacement

Overmolding of organosheets

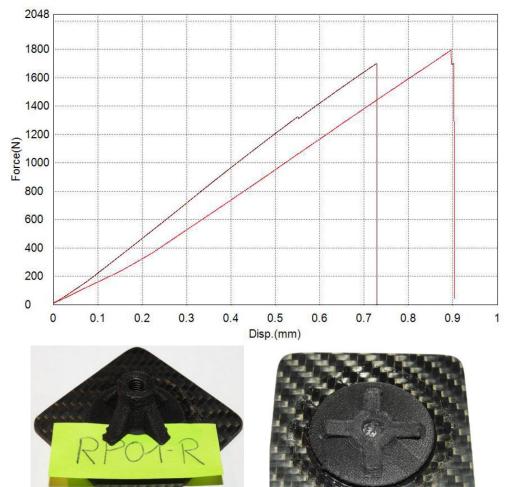
3D Printing !!!

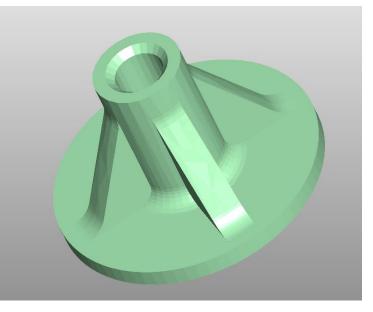
- High invests (molding, robot, IR-heating, auxalliry systems)
- High volume needed to have counterbalance invest
- Current applications: Brake pedal, Seat shell, Floor panels, Stringers etc.

Fraunhofer ICT



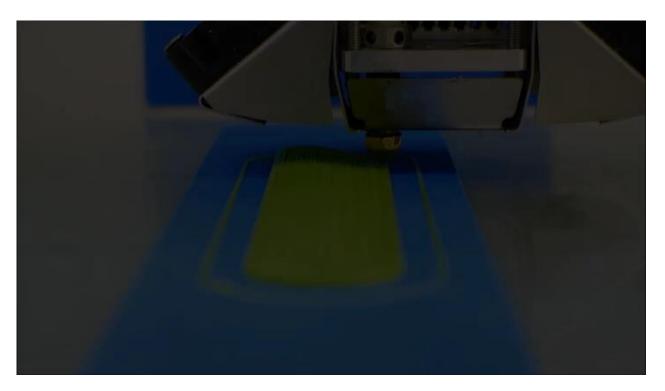
3D printing on organosheets


- Low invests
 - \rightarrow 3D Printer
 - \rightarrow No high volume needed
- LUVOCOM 3F provides similar performance as compounds for injection molding
- As in overmolding main issue is bonding between organosheet and 3F compound
 - Adaption of process technology
 - Adaption of adhesive strength and viscosity by LUVOCOM 3F formulation technology



Evaluation of bonding strength

- Heated chamber + hot air for the first 4 layers
- 3 of 5 specimen showed i.O. fracture
- Fracture strength around 20-25 MPa
 - \rightarrow Z-strength around 70MPa



Future of CF reinforced 3D printing for hybrid structures

What is needed to potentially surpass injection molding?

- "Real" 3D printing by z-axis and feed rate control
 - "Controlled" anisotropy
 - Software modification needed
- Adaption of nozzle
- Placement of endless CF
- Adjustments of the 3F compounds

© Airbus Innovation Group

Additive manufacturing solutions

Materials for thermosetting FRP technology In yacht construction and building

Mold build up – conventional yacht building

Mold build up – conventional yacht building

Thermosetting FRPs in yacht design consists of...

- Fiber intermediates (fabrics, Pre-preg)
- Resin (Epoxy, Polyester)
- Core materials (foams, Balsa)

				LUVOCOM
	PET	PVC	Balsa	PAHT CF
Density (g/cm3)	0,16	0,13	0,275	1,22
Shear modulus (GPa)	0,03	0,03	0,17	7,5
Shear strength (MPa)	0,86	1,15	3,03	100-150

• Thermoplastic bulk material as replacement for core materials?

<u>3D</u> Thermoplastic bulk material as replacement for core materials!

- Flexible material deposition
 - \rightarrow complex and light 3D structures <u>acting as lightweight core</u>
- Due to high strength, (partially) replacement of skin layers
 - \rightarrow weight savings
- 3D printed core can be used as a mold

3D printing of lightweight core

- High deposition system, direct from pellets, up to 1.5 kg/h of deposition
- Due to LUVOCOM 3F technology no heating chamber is needed
- Load oriented material deposition, so called anisogrid lattice
- Material placement by 6 axis KUKA robot system
- Reduction of cycle time: 70%

LIVREA Mini Transat 650

www.ocore.it

www.livreayacht.com

LUVOCOM 3F as FRP replacement

Our Competences

80

Europe & Head Office

Lehmann&Voss&Co. KG Alsterufer 19 20354 Hamburg Germany Tel +49 40 44 197-250 Fax +49 40 44 197-487 Email: luvocom@lehvoss.de

North-America

LEHVOSS North America, LLC 185 South Broad Street Pawcatuck, CT 06379 USA Tel +1-855-681-3226 Fax +1 860 495 2047 Email info@lehvoss.com

Asia

LEHVOSS (Shanghai) Chemical Trading Co., Ltd. Unit 4805 Maxdo Centre 8 Xingyi Road, Changning District Shanghai 200336 China Tel +86 21 6278 5181 Email info@lehvoss.cn

SKZ Das Kunststoff-Zentrum

Any recommendations made for use of Seller's materials are made to the best of Seller's knowledge and are based upon prior tests and experience of the Seller believed to be reliable; however, Seller does not guarantee the results to be obtained and all such recommendations are non-binding - also with regard to the protection of third party's rights -, do not constitute any representation and do not affect in any way Buyer's obligation to examine and/or test the Seller's our goods with regard to their suitability for his Buyer's purposes. No information given by the Seller is to be construed in any way as a guarantee regarding characteristics or duration of use, unless such information has been explicitly given as a guarantee.