
Vereinfachte Simulation von Klebeverbindungen an Hybridstrukturen durch Einsatz von Metamodellen

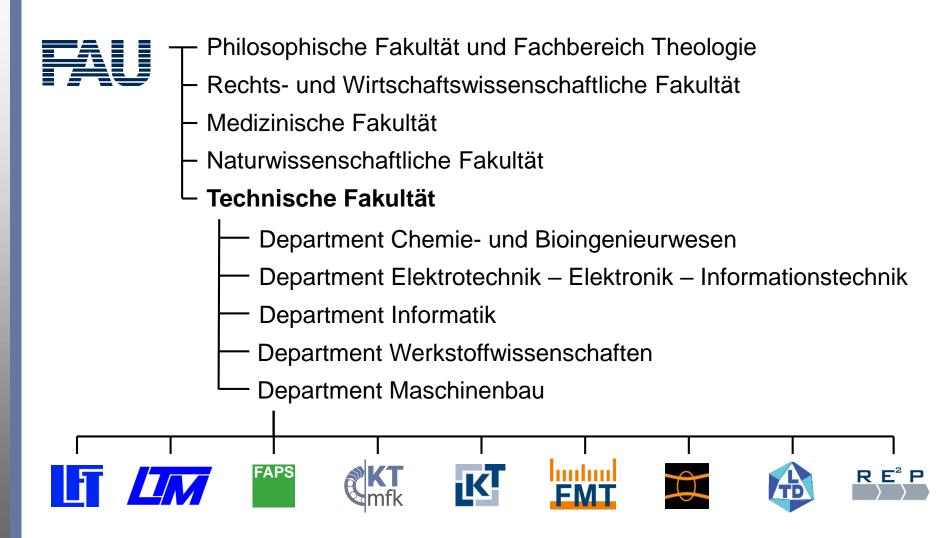
C. Witzgall; S. Wartzack

Gliederung

- Einführung: Problemstellung und Motivation
- Experimentelle Charakterisierung
- Detaillierte Simulation zur Bildung des Metamodells
- Validierung im Seitenaufprall-Test

Lehrstuhl für Konstruktionstechnik

Unsere Lage


- ...im Zentrum der Metropolregion Nürnberg
- ...in einer der industriell stärksten Regionen Deutschlands
- ...in einer der innovativsten Regionen Deutschlands
- Schwerpunkte:
 - Automotive
 - Maschinenbau

Friedrich-Alexander-Universität Erlangen-Nürnberg Prof. Dr.-Ing. Sandro Wartzack

Friedrich-Alexander-Universität Erlangen-Nürnberg Struktur

Lehrstuhl für Konstruktionstechnik

Organigramm und Fachgruppen


Virtuelle Produktentwicklung und Konstruktionsmethodik

Assistenzsysteme

Leichtbau

Nutzerzentrierte Produktentwicklung

Toleranzmanagement

Maschinenelemente und Bauteilauslegung

Tribologische PVD-/ PACVD-Schichten

Wälzlagertechnik

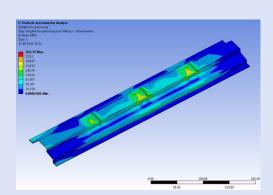
im Maschinenbau

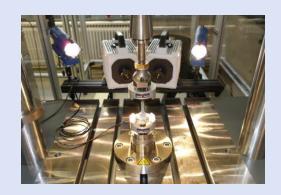
Nachgiebige Mechanismen

Formadaptive Strukturen

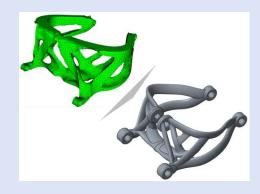
Elastische Sensoren und Aktoren

Lehrstuhl für Konstruktionstechnik


Fachgruppe Leichtbau


Leichtbau

Simulationsbasierte Auslegung


Auslegung faserverstärkter Kunststoffbauteile in frühen Entwicklungsphasen

Werkstoffcharakterisierung

Generierung von Materialkarten für FEM Materialparameteroptimierung

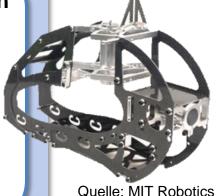
Strukturoptimierung

Automatisierte Interpretation von Strukturoptimierungsergebnissen

LEHRSTUHL FÜR KONSTRUKTIONSTECHNIK

Friedrich-Alexander-Universität Erlangen-Nürnberg Prof. Dr.-Ing. Sandro Wartzack Prof. Dr. sc. ETH Alexander Hasse

Problemstellung



Probleme bei CFK-/Aluminium-Fügeverbindungen

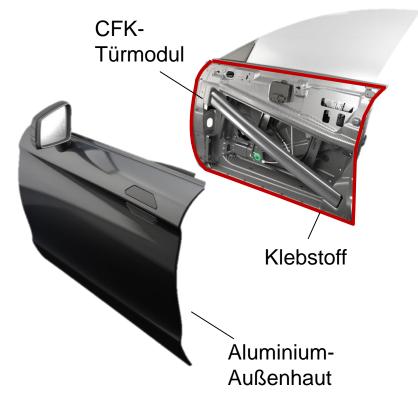
- Komplexe mechanische Eigenschaften des CFK
- $\Delta \alpha$ Problematik
- Unbekannte Crash-Eigenschaften
- Schwierige Auslegung

Konzipieren Ausarbeiten Planen Entwerfen Simulation

Frühzeitiger Einsatz simulativer Methoden zur Absicherung der Produkteigenschaften

Adhäsiv gefügte Hybridstrukturen

Leichtbau-Fahrzeugtür

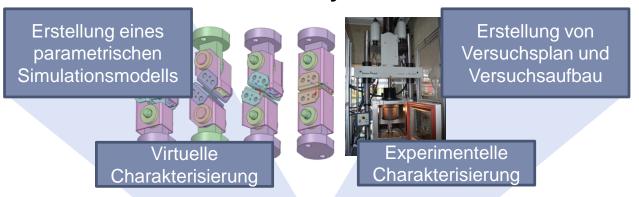


Ausgangssituation: Leichtbau-Fahrzeugtür

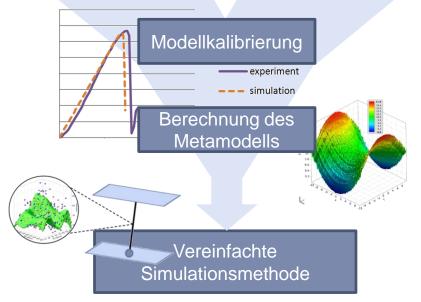
- Aluminium-Außenhaut
- Innenliegendes CFK-Türmodul
- Verklebt durch Polyurethan-Klebstoff
- Detaillierte Simulation der Fügeverbindung komplex und aufwändig

Zielsetzung:

 Auf Metamodellen basierende Simulationsmethode für hochwertige Ergebnisse bei geringem Aufwand


Quelle: Brose

Simulation von Fügeverbindungen BMBF-Verbundprojekt "REAL4HYBRID"

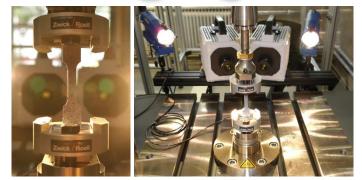


Rechnergestützte **A**uslegung von Fügeverbindungen an Aluminium/CFK-**Hybrid**strukturen

Projektpartner:

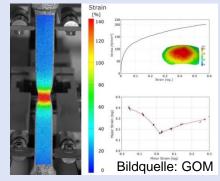
Experimentelle Charakterisierung

Prüfausstattung



Zwick HTM5020

Bildquelle: Zwick


Durchführung hoch-dynamischer Zugund Druckversuche (0,001 bis 20 m/s)

Temperaturkammer

Temperierung zwischen -60 und 150 °C

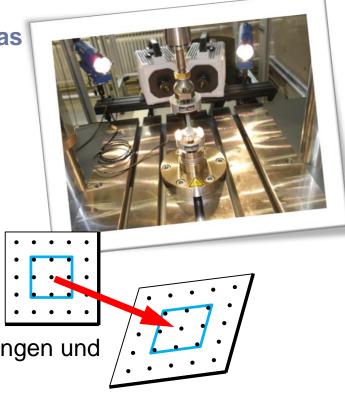
Messsystem GOM Aramis

Aufnahmen mit bis zu 750.000 fps und optische Dehnungsmessung

Ermittlung von Materialparametern

Optische Dehnungsmessung

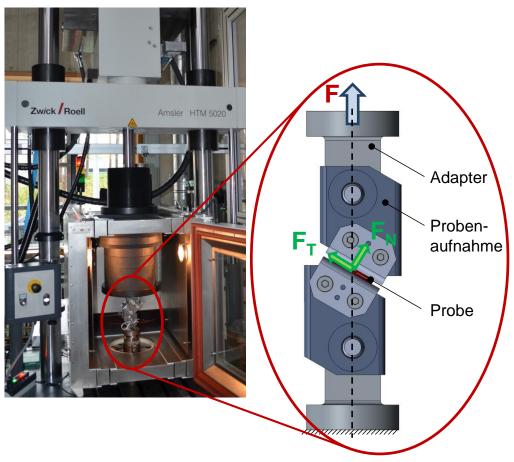
Hochgeschwindigkeitskameras


- Aufnahmen bis 150.000 fps
- Stereoskope Anordnung
- 0,01% 100% Dehnungsauflösung

Grauwertkorrelation

- Bestimmung der Dehnung durch Relativverschiebung der Sprenkelflächen
- Identifikation von Einschnürungen und Dickenabnahme

Beispiel


- Zugversuch, Abzugsgeschwindigkeit 5 m/s
- Aufnahme mit 60.000 fps, Dehnung überlagert

Experimentelle Charakterisierung

Klebeverbindungen auf dem Prüfstand

Prüfbedingungen

- Temperaturen von -30 bis +80°C
- Verschiedene Prüfgeschwindigkeiten
- Überlagerte Spannungszustände aus Normal- und Schubspannungen
- Verschiedene CFK-Lagenaufbauten

Zielsetzung:

- Untersuchung verschiedener Versagensmoden
- Ermittlung der Zerreißkräfte

Prüfergebnisse

Versagensarten

Adhäsives Versagen auf der Aluminium-Oberfläche

Kohäsives Versagen

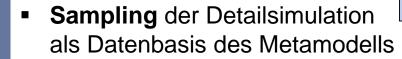
Delamination des CFK

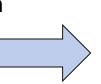
Mischversagen

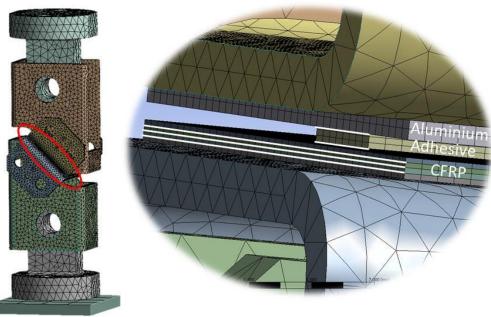
Kohäsives Versagen

Delamination

Detailsimulation des Prüfszenarios



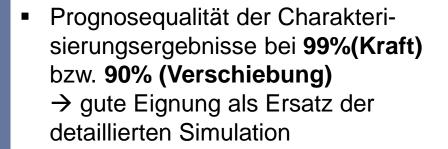


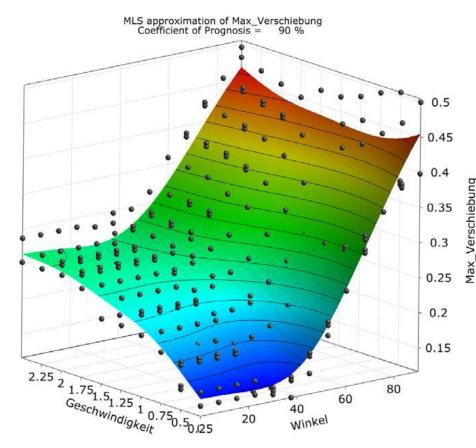

Virtuelle Charakterisierung:

- Detaillierte Modellierung des Prüfaufbaus:
 - Parametrisches Simulationsmodell
 - Volumenvernetzung der Klebschicht
 - Kohäsivzonen-Modelle
 - Schichtweise
 Volumenvernetzung der CFK
 Lagen

Einsatz der Metamodelle:

- Statt einer detaillierten Modellierung der Klebung greifen Kontaktelemente auf das Metamodell zu
- Kontaktstatus und –festigkeit werden aus dem Metamodell abgerufen


Aufbau des mathematischen Metamodells



Metamodellierung:

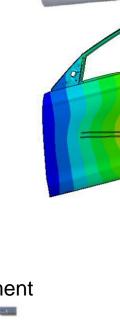
- Mathematische Repräsentation des detaillierten Simulationsmodells:
 - Abbildung der maximalen Verschiebung bzw. maximalen Kraft
- Identifizierung der dominanten Einflussparameter:
 - Geschwindigkeit
 - Winkel
 - Temperatur

Antwortfläche der maximalen Verschiebung über Lastgeschwindigkeit und -winkel. Punkte: gemessene Werte

Bundesministerium für Bildung

und Forschung

Validierung


Seitenaufpralltest einer Fahrzeugtür

Pfahl-Seitenaufpralltest einer Fahrzeugtür

- Komponentenprüfstand zur Abbildung der Nachgiebigkeit des Rahmens
- Testaufbau gemäß EuroNCAP
- Aufprallgeschwindigkeit 30 km/h

Abgleich von Simulation und Experiment:

- Versagen des Klebstoffs
- Eindringtiefe des Pfahls: 265 mm (Experiment)
 vs. 262,8 mm (Simulation)

© LEHRSTUHL FÜR KONSTRUKTIONSTECHNIK

Friedrich-Alexander-Universität Erlangen-Nürnberg Prof. Dr.-Ing. Sandro Wartzack Quelle:: Brose

GEFÖRDERT VOM

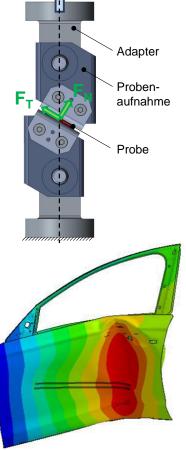
Zusammenfassung

Experimentelle Charakterisierung

- Prüfung der Klebeverbindung bei verschiedenen Geschwindigkeiten und Temperaturen
- Überlagerung verschiedener Spannungszustände in der Klebefuge
- Auftreten verschiedener Versagensarten

Detailsimulation zur Metamodellierung

- Parametrische Simulation der Charakterisierungs-Experimente
- Kalibrierung der Simulation an die Testergebnisse
- Sampling zum Aufbau der Metamodelle


Validierung

- Pfahl-Seitencrash auf Fahrzeugtür
- Gute Korrelation der experimentellen und simulativen Ergebnisse

Zukünftige Arbeiten

Ausbau der Simulationsmethode auf andere
 Fügeverbindungen, z. B. Nieten oder Flowdrill-Schrauben

