

Fracture toughness and crack resistance curves for fiber tension and compression failure modes in polymer composites under high rate loading

Peter Kuhn (TUM, LCC, Germany) <u>Dr. Hannes Körber</u> (TUM, LCC, Germany) Dr. Giuseppe Catalanotti (QUB, Belfast, UK) Dr. Jose Xavier (UTAD, Vila Real, Portugal)

4a Technologietag 28/02/2018

ПП

Agenda

- Motivation
- Fracture Toughness Characterization Strategy
- Experimental Setup and Results
- Static and Dynamic R-curves for CFRP and GFRP
- Conclusion and Outlook

Motivation

Research gap and goal of the presented work

- Energy-based damage models (e.g. MAT 262 in LS-DYNA) require specification of fracture toughness parameters
- → Experimental characterization of Fracture Toughness parameter for energy intensive intralaminar fiber failure modes under high rate loading

- Based on the relations between the energy release rate (G₁), the size effect law and the R-curve References: [Bažant & Planas, CRC Press 1997], [Catalanotti et al., Compos Part A 2014:56]
- Only ultimate force (P_u) needs to be recorded
- Crack tip must not be determined
- Specimen geometry is very suitable for dynamic loading (here split-Hopkinson bars are used)

Characterization Strategy

$$G_{I}|_{P_{u}}(a+\Delta a) = \frac{1}{4wE_{x}} \sqrt{\frac{1+\rho\left(E_{x}, E_{y}, G_{xy}, \mu_{xy}\right)}{2}} \left(\frac{P_{u}(w)}{t}\right)^{2} \phi\left(\alpha_{0} + \frac{\Delta a}{w}, \rho\right)$$

Geometry and material	Size effect	Dimensionless function
 E_x supposed to be most significant → Magnitude of E_x(ɛ̀) from QS and HR tests (UNC-/UNT-specimens) → G_{xy}(ɛ̀) from QS and HR tests (UNT- specimen) and from literature 	 P_u(w) determined from tests → Magnitude of P_u(w, ɛ́) from QS and HR tests (DENC-/DENT- specimens) 	 Determined by using Virtual Crack Closure Technique (VCCT) in a Finite Element (FE) model → Determination of Φ for QS and HR material data sets
Energy Release Rate		
• Calculation of G ₁ based on QS fracture theory \rightarrow Check if QS fracture theory is applicable for HR results from SHB tests		

Specimen geometries for the determination of the size effect

layup: [90/0]_{ns}

Test setup of compression test

- Self alignment device
- Optical Measurement and Digital Image Correlation (DIC)

$$\sigma_{\rm u} = \frac{{\rm P}_{\rm u}}{A_s}$$

σ

- Split-Hopkinson Pressure Bar (SHPB)
- Optical Measurement with High Speed Camera and DIC

SQ

$$\sigma_{s1} = \frac{A_b}{A_s} E_b \epsilon_T \quad (1 - wave) \qquad \sigma_{s2} = \frac{A_b}{A_s} E_b (\epsilon_I + \epsilon_R) \quad (2 - wave)$$

Test setup of tension test

- Standard Electromechanical testing machine
- Optical Measurement and Digital Image Correlation (DIC)

$$\sigma_{\rm u} = \frac{{\rm P}_{\rm u}}{A_s}$$

- Split-Hopkinson Tension Bar (SHTB)
- Optical Measurement with High Speed Camera and DIC
- FE-Simulation for optimized SHTB setup (Striker velocity, Pulse Shaper,...)

и И И И И

SO

Results: Compression tests of CFRP (UD IM7-8552)

Results: Compression tests of CFRP

Results: Compression tests of CFRP

- DENC-specimens are in stress-equilibrium before damage initiation
- Approximately the same strain rate before failure is achieved for all specimen types

Calculation of the R-curve

CFRP Compression

Calculation of the R-curve

CFRP (UD IM7-8552)

0,5

1,5

Δa [mm]

2,5

3,5

w [mm]

HR/QS

1,22

Calculation of the R-curve

GFRP (Saertex NCF E-Glass / Silka Biresin Epoxy CR80-CH80-2)

Conclusion

- The developed method enables a reliable determination of the R-curve and fracture toughness associated with the fiber failure modes for UD composites under high rate loading.
- Significant strain rate effects on the fracture toughness for fiber failure were observed for the investigated UD CFRP and UD GFRP composites.
- The strain rate effect on the fracture toughness is more pronounced for the GFRP composite, particularly for tensile loading.

Outlook

- Validation of the determined fracture toughness values (OHT/OHC tests)
- Extension of the method to other material systems, e.g. fabric composites (ongoing work)

Thank you for your attention!