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Chapter 1 
Introduction 
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Modern Structural Sealant Glazing Systems 

•  Adhesive connections in point supported 
façade systems 

•  Transparent structural silicone adhesive 
(TSSA) with strong adhesion performance 
under aesthetic and transparent look 

•  Hyperelastic material behavior  

•  Aspect ratio between height and diameter of 
silicone adhesive critical -> leading to high 
hydrostatic stresses within the bulk material 

1. Introduction - Motivation 
    Adhesive Connections in Modern Glass Facades 

Cross-
Section: 

H / B << 0.1 
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1. Introduction - Motivation 
    Adhesive Connections in Modern Glass Facades 

Cavitation & Stress Softening 
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Cavitation Phenomenon 

•  Cavitation in rubber-like materials describes sudden void growth due to 
hydrostatic tension loading until material failure occurs 

•  Cavitation was analyzed experimentally, analytically and numerically 

•  Classical volumetric constitutive hyperelastic models cannot represent 
cavitation effect 

•  Numerical full-scale calculations accounting for cavitation are rare  

•  Many numerical approaches lack of a user-friendly environment in terms 
of finite element calculations and numerical robustness  

1. Introduction 
    Cavitation in Rubber-Like Materials 
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Chapter 2 
Development of Volumetric Constitutive Model   
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Compressible Hyperelastic Material Law 

•  Split of the Helmholtz free energy function into isochoric / volumetric 
components 
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Ψ b( ) = Ψiso b( ) + Ψvol J( ) with F = FisoFvol

2. Development of Volumetric Constitutive Model  
    Basics on Continuum Mechanics 
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Identification of a RVE (Periodic / Non-periodic Microstructure) 

•  TSSA bulk material consists of polydimethylsiloxane polymers 

•  High amount of nano-silica particles with d=1nm 

•  Multitude of nano-cavities developed during admixing 

→  Built-up of numerical model accounting for nano-structure varying the 
fraction between bulk and cavity 

 

2. Development of Volumetric Constitutive Model 
    Nano-Structure of Transparent Structural Silicone 
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Transmission Electron Microscopy (TEM) Images 

•  Resolution ca. 1000 nm 

•  (1) void diameter ca. 30 nm; (2) void coalescence 

•  TSSA is a poro-hyperelastic material under finite void fraction 

 

 

2. Development of Volumetric Constitutive Model   
    Nano-Structure of Transparent Structural Silicone 

(1)
(2)

100 nm500 nm

(a) (b)
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Identification of a RVE (Periodic / Non-periodic microstructure) 

 

 

 

 

 

 

 

 

•  Dirichlet / Neumann boundary conditions applied 
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2. Development of Volumetric Constitutive Model   
    Homogenization 
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Rational Micro-Micro-Transition of Mechanical Fields 
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*    Suitable for large deformation  
 

2. Development of Volumetric Constitutive Model   
    Homogenization 
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Theory of Micromechanics and Homogenization 

•  Identification of a RVE (Periodic / Non-periodic microstructure) 

•  Rational micro-macro-transition of mechanical fields 

•  Determination of effective material properties 

 

  

x
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= β0 + β1x + β2x2
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2. Development of Volumetric Constitutive Model  
    Homogenization 
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Results - Numerical Homogenization of RVE 

•  Excellent representation of the structural behavior of RVE with 
developed constitutive law 

 

2. Development of Volumetric Constitutive Model   
    EHM vs. RVE 
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Chapter 3 
Novel Modeling Approach 
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Isoperimetric, Volumetric Coupling Term Accounting for Cavitation 

•  To avoid volumetric softening during isochoric deformations, a couple 
term will be introduced with 

•  In this context      is defined as isoperimetric, volumetric shape function 
with 

3. Helmholtz Free Energy Couple Term  
    Basic Idea 

 

Ψ = Ψiso + Ψvol,ND + Ψvol,couple

respectively

Ψ = Ψiso + Ψvol,ND +Ω Ψvol,classic − Ψvol,ND( )

 
Ω Π,Θ( ) = 1 − Π( )Θ with Ω ∈ 0,1⎡⎣ ⎤⎦

Ω
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Isoperimetric, Volumetric Coupling Term Accounting for Cavitation 

•  The volumetric shape function      defines weather a void is growing in 
volume   

•  The isoperimetric inequality      describes how the void is geometrically 
growing 

3. Helmholtz Free Energy Couple Term  
    Basic Idea 

Π

Θ

Fvol Fiso

Reference Configuration Current Configuration

Pure Dilatation

F = Fiso ⋅  Fvol
F = J1/3 ⋅ Fiso 
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Definition of Isoperimetric Inequality 

•  The isoperimetric inequality is a fundamental problem in classical 
calculus of variations 

•  It is described by finding the geometric figure with maximal area at a 
given perimeter 

•  In 2D Euclidean space, it is defined by 

3. Helmholtz Free Energy Couple Term  
    Isoperimetric Inequality 

  

t = 4πAs

Ls

≤ 1 with t ∈ 0,1⎡⎣ ⎤⎦

Ls = Length of a simple closed curve s
As = Area of the closed curve s

 Ls

 As



28.02.2018  |  Institute of Structural Mechanics and Design | Michael Drass |  18 
 

Plot of Isoperimetric Inequality – n = 1 

 

3. Helmholtz Free Energy Couple Term  
    Isoperimetric Inequality 
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Definition 

•  Introduction of equivalent volumetric strain (Hencky Strains) 

 

 

•  Normalization of equivalent volumetric strain to obtain single scalar, 
which differentiates between isochoric and volumetric deformations  

3. Helmholtz Free Energy Couple Term  
    Equivalent Volumetric Strain 

  

εeqn,vol = Iε + IIε + IIIε with Iε = ε1 + ε2 + ε3

IIε = ε1ε2 + ε2ε3 + ε1ε3

IIIε = ε1ε2ε3

 
Θ =

2εeqn,vol

εeqn,vol

+ 2

4
with Θ ∈ 0,1⎡⎣ ⎤⎦
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Chapter 4 
Computational Validation 
 
 



28.02.2018  |  Institute of Structural Mechanics and Design | Michael Drass |  21 
 

Simulation of Tension Test 

4. Computational Validation 
 

F = 26.86 [N]
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f = 1.52 %
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f = 1.32 %

f = 1.52 %

Axial Displacement
[mm]
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top side

bottom side



28.02.2018  |  Institute of Structural Mechanics and Design | Michael Drass |  22 
 

Simulation of Bulge Test  

 

4. Computational Validation 
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Simulation of Pancake Tension Test  

4. Computational Validation 
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Thank your for your attention! 


