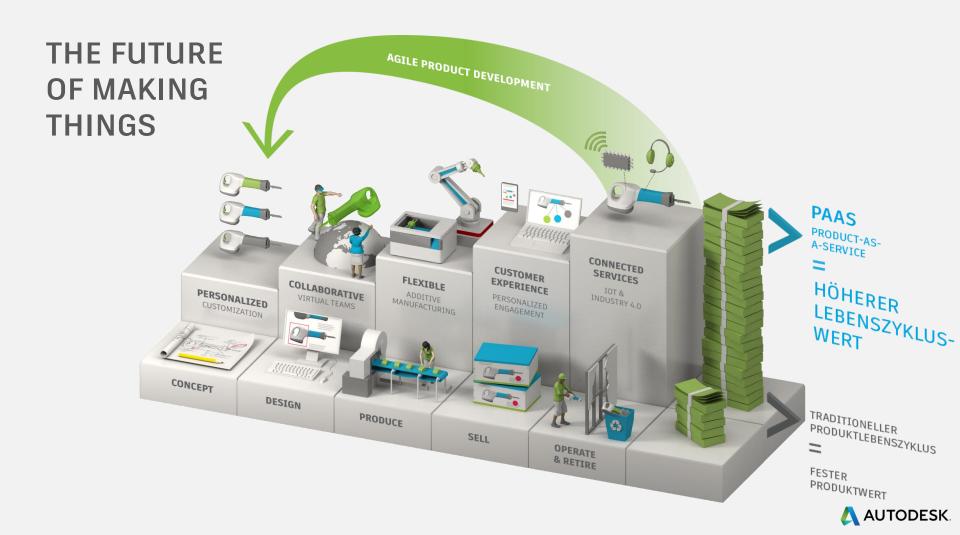
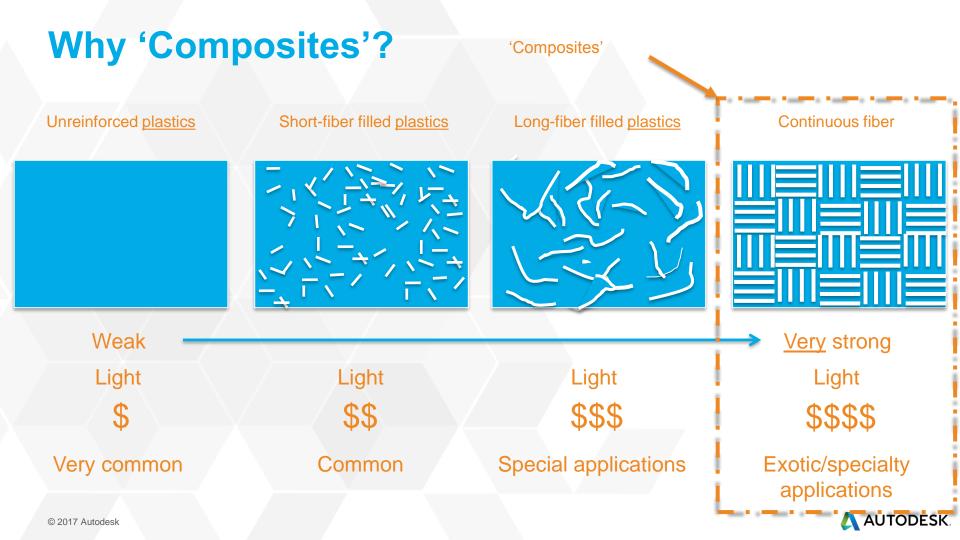
THE FUTURE OF MAKING THINGS BEGINS NOW

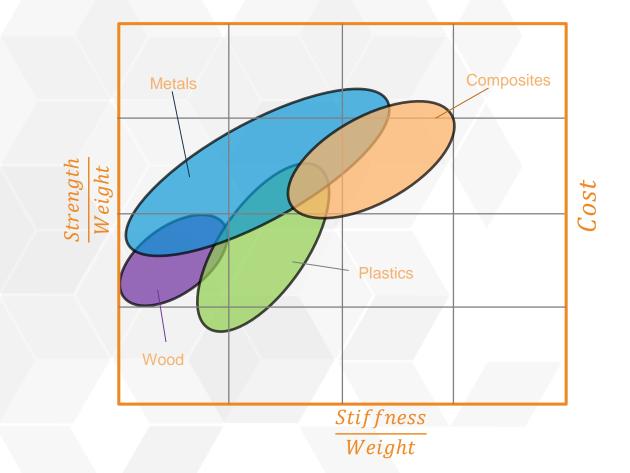

Moldflow in Leichtbauanwendungen

Matthias Fink Simulation Solutions Engineer

Agenda

- The Future of making Things
- Advances in Manufacturing for Continuous Fiber
- Resin Transfer Molding in Moldflow
- BMC in Moldflow


PRODUKTINNOVATIONSPLATTFORM

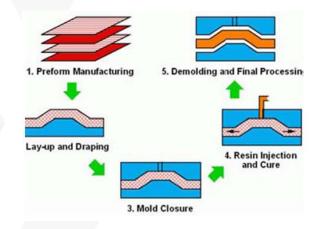


'Composites' for Strength Lightweighting Initiatives

© 2016 Autodesł

Why 'Composites'?

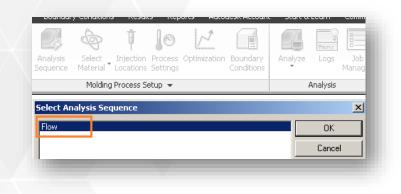
Market & Material Challenge


Resin Transfer Molding (RTM)

© 2016 Autodesl

Resin Transfer Molding (RTM) Flow Analysis

- Analyze the flow through porous media (preform)
- Preforms (reinforcements) are present in the mold as dry form

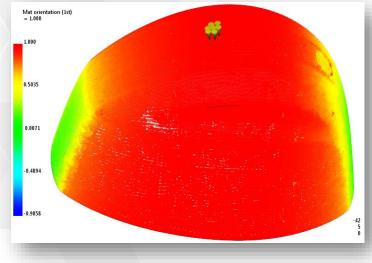

Resin Transfer Molding Analysis

- RTM 3D flow analysis:
 - Regular RTM Flow analysis (only macroscopic flow)
 - Simulate anisotropic permeability in the thickness direction
 - Better handling of parts with complicated geometry than mid-plane RTM simulation
 - Handle vacuum pressure using venting analysis
 - Handle gravity effect

Work Flow

- Molding process: RTM or SRIM
- Only "Flow" analysis sequence
- Assign "Preform element (3D)" for the elements in the area for RTM analysis

Preform Properties for Preform Element (3D)


eform element (3D)
Part Surface Properties Preform Properties Mold Properties
Preform (3D)
Density: 1150 Edit Select
Preform orientation (1st principal direction)
dx 1
dy 0
dz 0
Preform orientation (2nd principal direction)
dx 0
dy 1
dz 0
Adjust preform orientation to follow along the local surface
Adjust porosity and permeability with local thickness
lame Preform element (3D) #1
1
Apply to all entities that share this property

- Preform orientation: 1st and 2nd principal directions
- Adjust preform orientation to follow along the local surface (default: On)
- Adjust porosity & permeability with local thickness (default: Off)

Input Data Option: Preform Element (3D)

- Adjust preform orientation to follow along the local surface
 - Adjust preform orientation automatically to follow along the surface
- Adjust porosity & permeability with local thickness
 - Use the difference in local thickness and the reference thickness to adjust porosity and the permeability from the input values
 - Use the thickness information from "dual-domain" to improve local thickness accuracy

Mat Orientation (1st)

Preform / Filler Properties for Preform (3D)

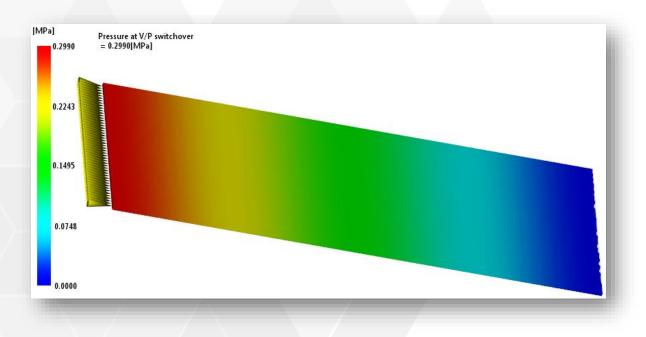
escription Preform Pr	operties	Filler Properties
Preform porosity and p	ermeability	(3D)
phi	0.5	[1e-005:1]
К11	1e-00\$	m^2[1e-017:0.001]
K22	1e-00\$	m^2 [1e-017:0.001]
К33	1e-00\$	m^2 [1e-017:0.001]
Reference thickness	2	mm (0:100)

1 mor	data –				
	Description		Weight % [0:100]		
1	Glass	Mat	50		

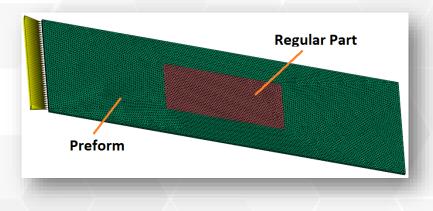
- Porosity: The ratio of the void volume to the cavity volume
- Permeability in 3 principal directions: K11, K22, K33
- Reference thickness: The part thickness at which the porosity/permeability are measured
- Select the fiber mat materials

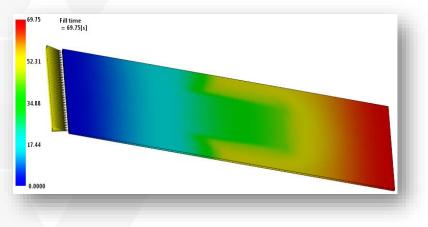
Test Case: A Rectangular Plate

- Dimension: 300 x 100 x 2 mm
- Injected from one side
- 1st Principal direction: Length direction
- Flow rate: 0.5 cm³/sec
- Viscosity: 0.4 Pa-sec
- Permeability (isotropic): 1.0x10⁻⁹ [m²/sec]
- Porosity: 0.5


Results

- All the results available for Reactive Molding
- Additional results for RTM
 - Mat orientation (1st, 2nd, 3rd principal direction)


Injection Pressure


- Injection pressure from simulation: 0.299 MPa
- Analytical solution: 0.3 MPa

Mixture of Preform and Regular Part

Flow in the regular part region (no fiber mat) is faster

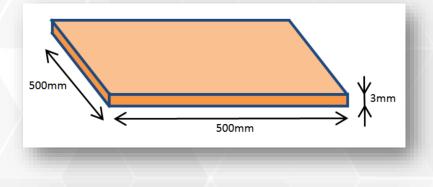
BMC Validation TUM

© 2016 Autodesl

BMC Validierung

Screening of methods for process modeling and simulation of Bulk Molding Compounds (BMC)

Semesterarbeit von Thomas Roth

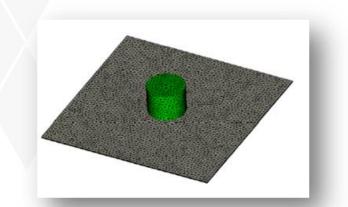

an der Fakultät für Maschinenwesen der Technischen Universität München

Betreut von:

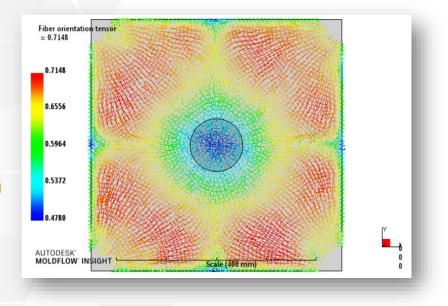
Univ.-Prof. Dr.-Ing. Klaus Drechsler Lehrstuhl für Carbon Composites Wiss. Mitarbeiter Dipl.-Ing. Mathias Hartmann Lehrstuhl für Carbon Composites

BMC Validation Setup

		1
п		п
	500mm	\rightarrow


target thickness	3	mm
compression speed	0.73	mm/s
maximum compression force	30	kN
compression temperature	80	°C
compression time	apprx. 125	s
curing temperature	180	°C

BMC Validation Setup


	fottomporation 2 7Fiber constation analysis if the mature		Filter So	Net Paramatiant.		Compression description Pura compression press open distance	e option				
There	er Solver Parameters				Concernant I	Automatic			•		
	pply fiber mist condition of					Press componentiations	105.9	a (0.1200)			
7	(hate					Press speed cop	0.73	(mmb (5):500 (6)			
	derinkateonoliton					Press compression lact many Press compression speed vs distance		torrer (0-20082-2)			
- I i	these aligned as skin; fandum al core							a sense)			
64	alcalete liber bendunge					Distance evo (ES000) rends	(0.1008)				
9	Dolernized by length		· Förlöreskapap	earlates.		1 0.1	0,73				
			A	nywy cakalatin action.		2 75.04	0.72				
			(espiral)	electric deservation.		i .					
						Switch to grow force control					
			1000	Coscel Hulp		By % nodec lind			* # 1955	16 52 3	90)
- MEALER	d - Reactive Molding Settings - I	tion in the				Compression force after events to press	a Roma control				
the second	In constitution account parameters	and a set of a				Fieldies to the union of earth neer-			* Edir	A.M.	
	Multinetial conversion	8	110						Ates	med spikers.	
	Caring time	a	+ 2]								
	N harmon								1000	ck Frait	Gaecal Help
a	NAT MICH.	0	#8001								
1	NAI missi Piscor dituring analysis Perform preconditioning analysis	0	* [0.001]								

BMC Validation Results

"Moldflow simulation results are by a small margin the most accurate to the experimental fiber orientation. Furthermore there is no non-smooth behavior and the parallel fiber alignment near wall areas are in consent to literature observation."

Kernaussagen

- Autodesk stellt sich den Herausforderungen einer sich ändernden Industrie und entwickelt Werkzeuge, welche die sich verändernden und auch neu hinzukommenden Prozesse unterstützt
- Hierbei liegt ein Schwerpunkt auf Leichtbau und additiven Verfahren
- Systeme wie Moldflow sind heute in der Lage die Herstellbarkeit vieler Leichtbauanwendungen zu überprüfen und zu optimieren

Thank you!

Questions?

AUTODESK.

Autodesk is a registered trademark of Autodesk, Inc., and/or its subsidiaries and/or affiliates in the USA and/or other countries. All other brand names, product names, or trademarks belong to their respective holders. Autodesk reserves the right to alter product and services offerings, and specifications and pricing at any time without notice, and is not responsible for typographical or graphical errors that may appear in this document.