

AKTIENGESELLSCHAFT

KONZERNFORSCHUNG

PROCESS SIMULATION IN THE AUTOMOTIVE INDUSTRY

CHRISTOPH KUHN VOLKSWAGEN GROUP RESEARCH

4A ENGINEERING DAY | SCHLADMING

AGENDA

INTRODUCTION & MOTIVATION

LIGHTWEIGHT MATERIALS AND PROCESS SIMULATION TOOLS

- ► LONG FIBER REINFORCED PLASTICS
- ► FOAM STRUCTURES
- ► INTEGRATIVE SIMULATION

CONCLUSION & OUTLOOK

VOLKSWAGEN

INTRODUCTION SHARES ON OVERALL CONSUMPTION

DISTRIBUTION OF VEHICLE WEIGHT

COMPACT CLASS

VOLKSWAGEN AKTIENGESELLSCHAFT

REVERSED WEIGHT SPIRAL INFLUENCE OF BODY WEIGHT REDUCTION

Body weight reduction Component and functions integration New materials and processes Lighter chassis Costs and weight optimization **Reduced tank** Smaller size engine Initial weight reduction in the body lead to secondary effects in the vehicle. kg

TECHNOLOGIES FOR WEIGHT REDUCTION

FOR THE AUTOMOTIVE INDUSTRY

PROCESS SIMULATION

VIRTUAL PROCESS CHAIN

Behavior

VOLKSWAGEN AKTIENGESELLSCHAFT

PROCESS SIMULATION

INJECTION AND COMPRESSION MOLDING

PROCESS SIMULATION RESULTS

FOR COMPRESSION MOLDING

- Mold Filling, Air Traps, Weld Lines
- Temperature Distribution
- Curing (Thermosets)

- Prediction of Fiber Orientation
- Reorientation of Fibers due to Changes in Polymer Flow and Part Geometry

- Prediction of Fiber Length
 Distribution in various Sections of the Mold
- Breakage Statistics based on Initial
 Fiber length and Stress during Filling

VOLKSWAGEN

EXPERIMENTS ON LONG FIBER REINFORCED PLASTIC

COMPRESSION MOLDING

CT ANALYSIS STAR SHAPED GEOMETRY

Experiments show deviations to process simulation results

- **Fiber Orientation**
- Fiber Breakage
- **Fiber Content Distribution**

FIBER MATRIX SIMULATION EXAMPLE

Quelle: Polymer Engineering Center, Prof. Tim A. Osswald

VOLKSWAGEN AKTIENGESELLSCHAFT

DIRECT FIBER SIMULATION (DFS)

GENERAL PRINCIPLE

- Fibers are simulated as multi-beam elements inside the polymer flow
- Complex interactions and fiber behavior can be simulated
- Fiber properties are free to chose (e.g. geometry, flexibility, breakage conditions)
- Detailed information on fiber orientation, fiber breakage and fiber content distribution

Fiber Interaction in DFS

DIRECT FIBER SIMULATION

RIBBED COMPONENT

- Simple Compression Molding Experiments with Cross Rib
- Mapping of DFS into Moldex3D Filling Simulation

Input of Fiber Properties:

- Fiber Length
- Number of Segments / Flexibility
- Fiber Content

Evaluation of Boundary Conditions, Fiber Movement & Interaction at Rib Entrance

UPSCALING DFS RIB FILLING SIMULATION

VOLKSWAGEN

POLYMER FOAM STRUCTURES FOR AUTOMOTIVE APPLICATIONS

Benefits for Polymer Foam Structures

- Significant Weight Saving & Costs Reduction Potentials regarding material and processes (>10 %)
- Physically Foamed components comply with Volkswagen Surface Quality requirements for visible components
- Adaption of physical foaming with other lightweight technologies possible (e.g. hybrid materials, multicomponent injection molding)

Available Technologies

Mucell[®]

Pro Foam[®]

Cellfoam [®]

- Smart Foam [®]
- IQ Foam by Volkswagen

Cross section of a thermoplastic foam plate with IQ Foam

IQ FOAM TECHNOLOGY

IQ Foam Process

νοικςωδςεν

IQ FOAM BENEFITS FOAM IN JECTION MOLDING

IQ Foam Process

IQ Foam Unit - Benefits

- Adaptable to most injection molding machines
- Very Low investment costs
- No integration into machine control ► system necessary
- Easy switch from foaming to solid injection molding
- Large variety of polymer / gas combinations possible

Component Benefits

- Significant weight reduction while maintaining mechanical requirements
- Material and cost savings
- Lower clamp forces
- No gas counter pressure inside mold necessary
- Decreased mold wear due to reduced injection pressure
- Increasing weight reduction possible with precision mold opening
- Both partial and large-scale foaming possible with core pull technology

FOAMING PROCESS SIMULATION

FOAM INJECTION MOLDING

- Foaming Tools available in Moldex3D
- Prediction of Foam Structure (Cell Density, Size Distribution, etc.) depending on processin parameters
- Application of Core Pull, Gas Counter Pressure & Variothermal Temperature Settings
- Forwarding of Cell Structure to Structural Simulation

INTEGRATIVE SIMULATION CHAIN CONNECTING PROCESS AND STRUCTURAL SIMULATION

Interchange of Process Simulation results with Structural FEA Simulation

- "Mapping" of Processing results (Donor Mesh, e.g. Tetra) onto Structural Simulation Mesh (Receiver Mesh, e.g. 2D-Shells, Hexa, Tetra)
- Calculation of element properties based on local microstructure (e.g. Fiber Orientation, Foam Strucutre) with Homogenization Theories (e.g. Mean Field)

Increasing Accuracy of Structural Simulation with Fiber Reinforced Plastics & Foam Structures

VOLKSWAGEN AKTIENGESELLSCHAFT

CONCLUSION & OUTLOOK

DIRECT FIBER SIMULATION

- Process Simulation Tools are vital for process understanding and prediction
- Tools for fiber reinforced plastics and foam structures are available
- Adjustments for long fiber application are in operation
- Forwarding of Process Simulation results to process simulation are important
- Evaluation of results with real components is key!

Foaming Process

Long Fiber Compression Molding

Thank you for your attention!

