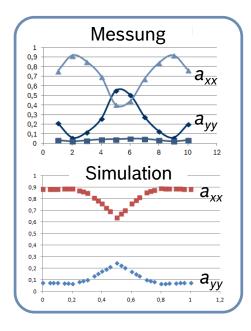
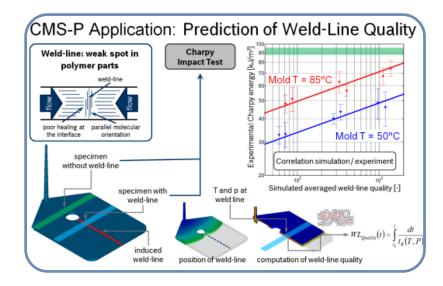
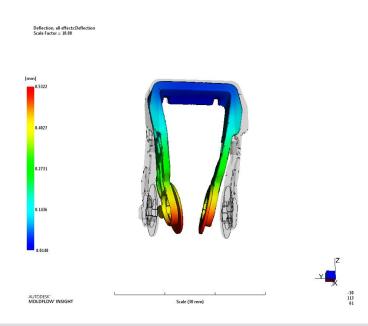
Prozesssimulation - Vorhersage der Faserorientierung, Möglichkeiten und Grenzen aktueller Simulationsprogramme



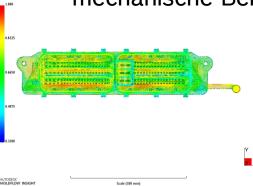
Dipl.-Ing. Armin Kech Robert Bosch GmbH CR/APP2 Renningen, DE


Gliederung

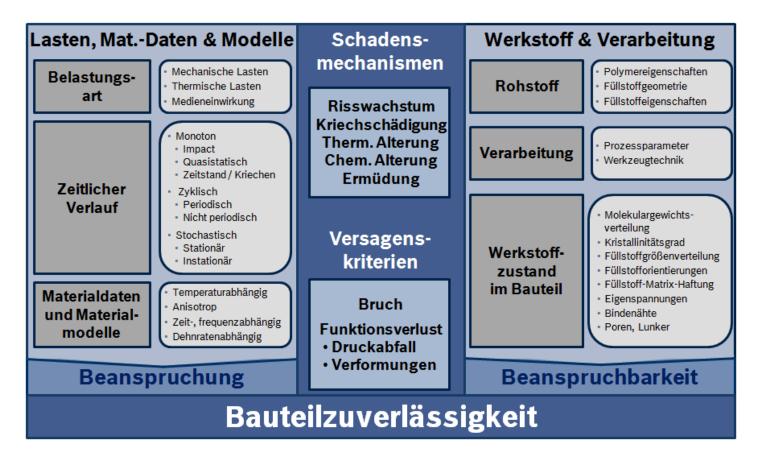
- Motivation
- Simulationslandschaft
- Modelle
- Validierung
- Ein Beispiel
- Zusammenfassung und Ausblick



- Die Prozesssimulation allgemein wird eingesetzt, um
 - Probleme, wie Bindenähte, Schmelzestagnationen, lokale Masseanhäufungen, etc. bei der Herstellung spritzgegossener Teile frühzeitig zu erkennen.



- Die Prozesssimulation allgemein wird eingesetzt, um
 - Die Verzugsneigung (qualitativ, in Einzelfällen auch quantitativ) zu bestimmen und bei der Werkzeugerstbemusterung zu berücksichtigen



- Die Prozesssimulation allgemein wird eingesetzt, um
 - Eingangsgrößen für die rechnerische Bauteilauslegung, ggf. mit Mappingsoftware wie DIGIMAT oder CONVERSE, zu bestimmen.
 - Solche Eingangsgrößen sind:
 - Eigenspannungen für die thermo-mechanische Auslegung
 - Temperaturfelder für die rechnerische Bestimmung von Eigenspannungen
 - Faserorientierungen für thermo-mechanische oder mechanische Berechnungen

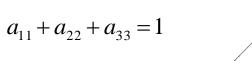
Simulationslandschaft

Simulationslandschaft

- Marktführer:
 - MOLDFLOW (Fa. AUTODESK, US) mit den Serien AMI und AMA
 - Geometriediskretisierung mit linearen Dreiecken oder Tetraedern als Mittelflächen-, Oberflächen- oder 3D-Modell
- Marktbegleiter:
 - Moldex2D und Moldex3D (Fa. CoreTech, Taiwan) mit den Serien Solid und eDesign
 - Geometriediskretisierung entweder über regelmäßige Gitter oder über Hexaeder (BLM), Tetraeder, etc. als Mittelflächenoder 3D-Modell

Simulationslandschaft

- Marktbegleiter:
 - CADMOULD (Fa. SIMCON, Deutschland) mit den Serien CADMOULD Rapid und CADMOULD 3D-F
 - Geometriediskretisierung über Dreiecke und Beamelemente als Oberflächennetz
 - SIGMASOFT (Fa. Sigma Eng., Deutschland)
 - Geometriediskretisierung mit regelmäßigen karthesischen Gittern (konturangepasst) in 3D
 - REM3D (Fa. Transvalor, Frankreich)
 - Geometriediskretisierung mit Tetraedern in 3D



Modelle

→ Jeffery's Gleichungen von 1922 (G.B. Jeffery. The motion of ellipsoidal particles immersed in a viscous Fluid. Proc. Roy. Soc. London A, 102:161-179, 1922.)

→ Advani und Tucker, 1987 (S. G. Advani, Ch. L. Tucker III, The Use of Tensors to Describe and Predict Fiber Orientation in Short Fiber Composites)

$$a_{ij} = \oint p_i \cdot p_j \Psi(p) dp = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix} \qquad a_{11} + a_{22} + a_{33} = 1$$

Modelle

 Das Folgar-Tucker Modell von 1984 (F. Folgar, Ch. L. Tucker III, Orientation Behavior of Fibers in Concentrated Suspensions)

$$\frac{Da_{ij}}{Dt} = -\frac{1}{2} \left(\omega_{ik} \cdot a_{kj} - a_{ik} \cdot \omega_{kj} \right) + \frac{1}{2} \lambda \cdot \left(\dot{\gamma}_{ik} \cdot a_{kj} + a_{ik} \cdot \dot{\gamma}_{kj} - 2 \cdot a_{ijkl} \right) + 2 \cdot C_I \dot{\gamma} \left(\delta_{ij} - 3a_{ij} \right)$$

→ Implementiert in MOLDFLOW, Moldex3D, CADMOULD, REM3D, SIGMASOFT mit unterschiedlichen Abschlussapproximationen

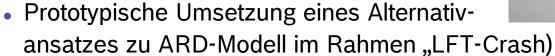
Modelle

Das Residual Strain Closure Modell (RSC) von 2008 (J. Wang, J.F. O'Gara, and C.L. Tucker III, An Objective Model for Slow Orientation Dynamics in Concentrated Fiber Suspensions: Theory and Rheological Evidence.)

$$\begin{split} &\frac{Da_{ij}}{Dt} = -\frac{1}{2} \Big(\omega_{ik} a_{jl} - a_{ik} \omega_{jl} \Big) + \frac{1}{2} \lambda \Big(\gamma_{ik} a_{kj} + a_{ik} \gamma_{kj} - 2 \Big[a_{ijkl} + (1 - \kappa) \Big(L_{ijkl} - M_{ijmn} a_{mnkl} \Big) \Big] \gamma_{kl} \Big) \\ &+ 2\kappa C_{I} \gamma \Big(\delta_{ij} - 3a_{ij} \Big) \\ &L_{ijkl} = \sum_{p=1}^{3} \sigma_{p} e_{i}^{p} e_{j}^{p} e_{k}^{p} e_{l}^{p} \\ &M_{ijkl} = \sum_{p=1}^{3} e_{i}^{p} e_{j}^{p} e_{k}^{p} e_{l}^{p} \end{split}$$

 $\sigma_p = pth$ eigenvalue of a_{ij} ; $e_i^p = ith$ component of pth eigenvalue of a_{ij}

Modelle


- Kombinationen für lang- und kurzfaserverstärkte Thermoplaste
 - ARD-RSC-Model in MOLDFLOW

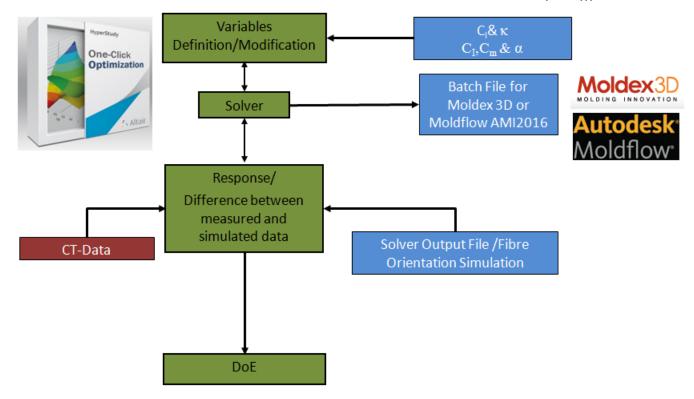
•
$$\frac{a_{ij}}{dt} = -\frac{1}{2} \cdot \left(\omega_{ik} \cdot a_{kj} - a_{ik} \cdot \omega_{kj}\right) + \frac{1}{2} \cdot \lambda \cdot \left[\dot{\gamma}_{ik} \cdot a_{kj} + a_{ik} \cdot \dot{\gamma}_{kj} - 2 \cdot a_{ik} \cdot \dot{\gamma}_{kj}\right]$$

Modelle

- → Trends:
 - Alternative Modelle in SIGMASOFT
 - Kopplung Rheology und Orientierung
 - Maier- Saupe Ansatz zur Verbesserung Interaktionskoeffizienten

- Lambda-Modell nach D.E. Smith, S. Montgomery-Smith, D.A. Jack, Modeling Orientational Diffusion in Short Fiber Composite Processing Simulations von 2009
- Kopplung mit Faserkonzentration zur Berücksichtigung von lokalen Entmischungsphänomenen

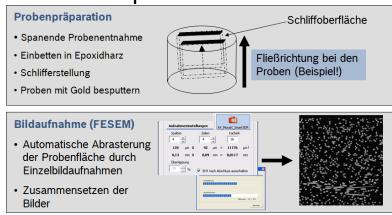
Modelle

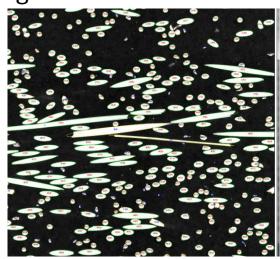

→ Das Anisotropic Rotational Diffusion Modell (ARD) von 2009 (J. Phelps, Ch. L. Tucker III, An Anisotropic Rotary Diffusion Model for Fiber Orientation in Short- and Long-Fiber Thermoplastics)

•
$$\dot{A}^{ARD} = (W \cdot A - A \cdot W) + \xi \cdot (D \cdot A - A \cdot D - 2 \cdot A : D) + \dot{\gamma} \cdot [2 \cdot C - 2 \cdot A \cdot D] + \dot{\gamma} \cdot [2 \cdot C - 2 \cdot C] + \dot{\gamma} \cdot [2$$

Modelle

- Trends:
 - Anpassen von Faserorientierungsparametern (C_1 , C_m , α , κ)




Validierung

 Zur Validierung der Faserorientierung gibt es heutzutage zwei unterschiedliche Möglichkeiten: 2D

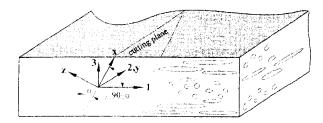
Bestimmung an Schliffen der Faserorientierung auf Basis der

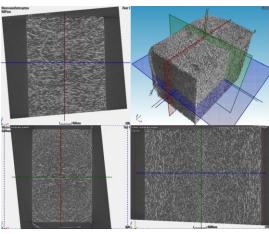
Surface-Ellipse-Method

- Vorteil: Schnelle Vermessung großer Bereiche
- Nachteil: Korrektur durch Einbeziehung einer Gewichtsfunktion notwendig; Unbestimmtheit bzgl. dritter Dimension
- P.J. Hine, N. Davidson, R.A. Duckett, I.A. Ward, Measuring the Fibre Orientation and Modelling the Elastic Properties of Injection-Moulded Long-Glass-Fibre-Reinforced Nylon

Validierung

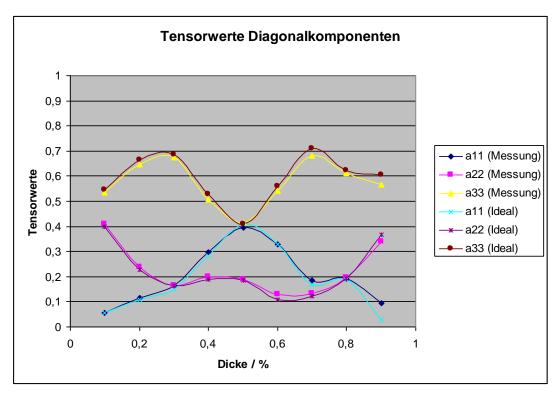
- Abhilfemaßnahmen zur 180° Unbestimmtheit der Faserorientierungsparameter
 - Schleifen in mehreren Ebenen
 - Konfokale Mikroskopie
 - Anschliff unter definiertem Winkel




Fig. 7. SFRT-sample with an inclined cutting surface and the used coordinate systems.

- B. Mlekusch, Fibre Orientation in short-fibre-reinforced thermoplastics II. Quantitative measurements by image analysis
- Verwendung einer Gewichtungsfunktion, die berücksichtigt, ob Fasern einer bestimmten Ausrichtung und bestimmter Dimensionen im Schliff sichtbar sind

Validierung


- Zur Validierung der Faserorientierung gibt es heutzutage zwei unterschiedliche Möglichkeiten: 3D
 - Bestimmung der Orientierung anhand von μCT-Analysen

- Vorteil:
 - Echte 3D Vermessung,
 - Bei Einzelfaserauflösung (z.B. Fraunhofer LBF-K):
 - Gleichzeitige Bestimmung der Faserlänge möglich
- Nachteil:
 - Durch hohe Auflösung nur sehr kleine Volumina in einem Analyseschritt vermessbar
- C.N. Eberhardt, A.R. Clarke, Automated reconstruction of curvilinear fibres from 3D datasets acquired by X-ray microtomography

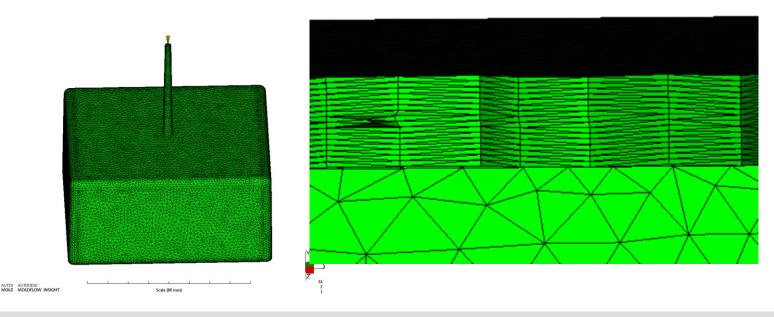
Validierung

Mit Hilfe von virtuellen Fasern bekannter Ausrichtung kann die Qualität der Messung bewertet werden.

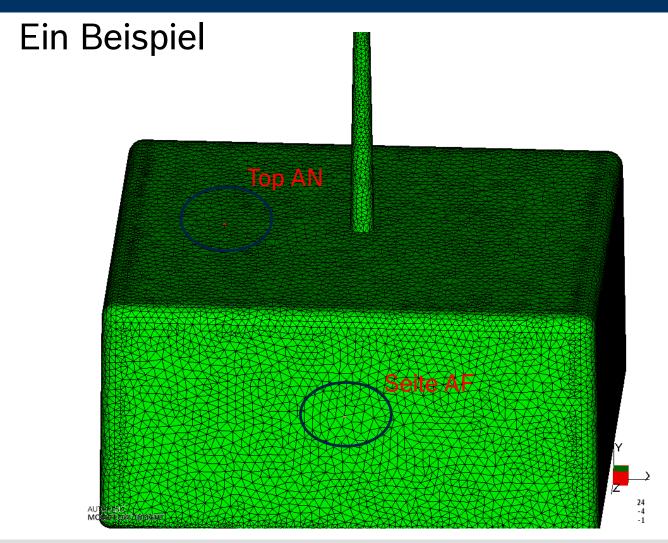
Ein Beispiel

- Die Prozessparameter sowie die Geometrie der vorkorrigierten Kästchen wurden für Simulationen in AUTODESK Moldflow AMI 2016 verwendet.
 - Verwendung des RSC-Modells in AUTODESK Moldflow, Default **Parameter**

• Entnahme an 3 Positionen von Proben zur Bestimmung der Faserorientierung

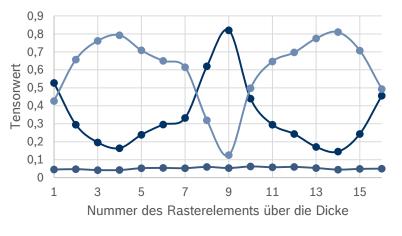

Ein Beispiel

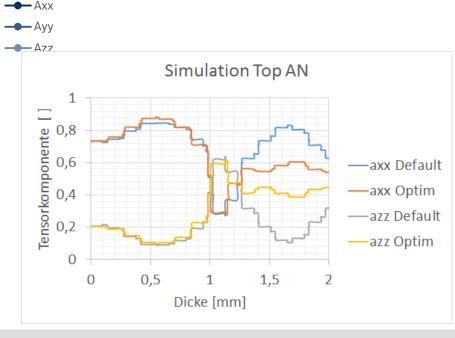
→ Für die Validierung wurden am Fraunhofer LBF-K Kästchen mit unterschiedlichen Materialien gespritzt.


Ultramid A3EG10 PA66-GF50

Ultramid A3EG6 PA66-GF30

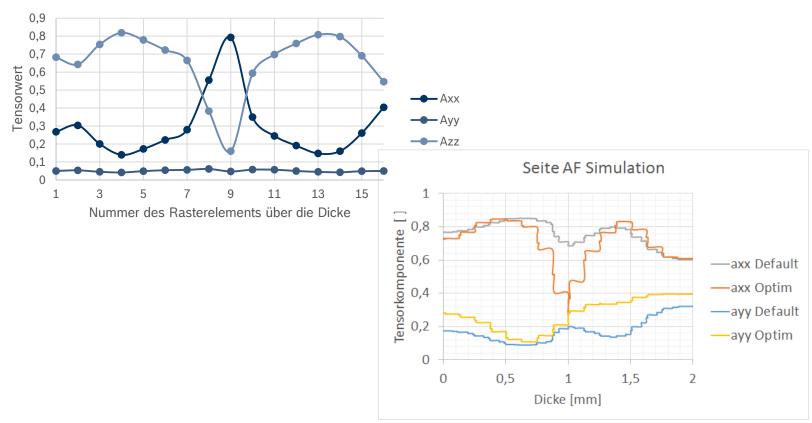
Ultramid B3EG6 PA6-GF30



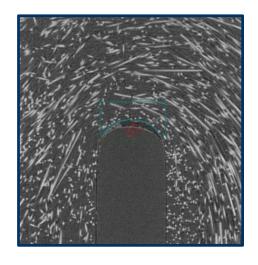


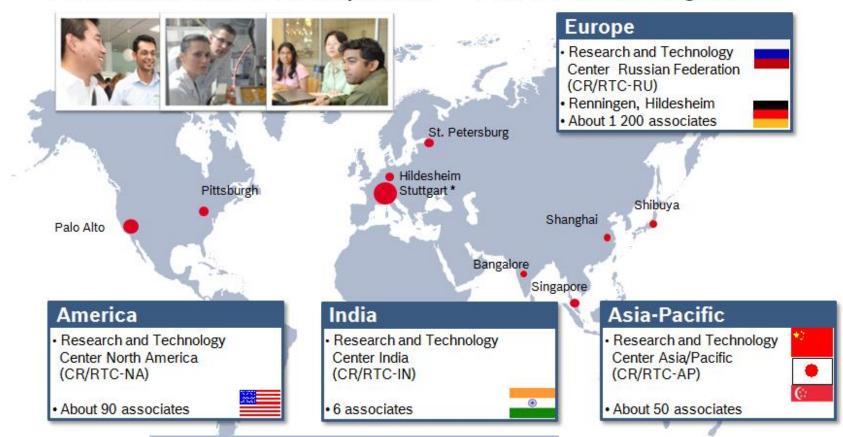
Ein Beispiel – CT Analyse vs. Simulation: Top

Faserorientierung: Probe 1 PA66-GF30 schwarz, Position M-AN



Ein Beispiel -CT Analyse vs. Simulation: Seite


Faserorientierung: Probe 2 PA66-GF30 schwarz, Position M-AF


Zusammenfassung und Ausblick

- → In der Prozesssimulation ist die Faserorientierung in vielen Fällen ausreichend für die Berechnung von mechanische Beanspruchungen
- Es gibt aber Ausnahmen, in denen die Güte nach wie vor nicht ausreicht
- → Lokale Effekte, wie Kerben oder Bindenähten noch problematisch
 - Lokale Faserlängenunterschiede
 - Lokale Konzentrationsunterschiede
 - Lokale Interaktionskoeffizienten
- Höhere Genauigkeit benötigt für thermo-mechanische Berechnungen

Research and Development - Vernetzte Intelligenz

Vielen Dank für die Aufmerksamkeit!

