

Materialmodelle (phänomenologische Ansätze, mikromechanische Ansätze, ...)

<u>P. Reithofer</u> 4a engineering GmbH, Traboch, Austria

N

Seite: 1 / 22 Autor: Peter Reithofer, Artur Fertschej, Bernhard Jilka Datum: 160302 Titel: rep_16030201_pr_afer_bj1a_eng_Materialmodelle.ppt

Kurz- und langfaserverstärkte Thermoplaste Werkstoffverhalten

Titel: rep_16030201_pr_afer_bj1a_eng_Materialmodelle.ppt

Kurz- und langfaserverstärkte Kunststoffe Materialverhalten

N

w

Autor: Peter Reithofer, Artur Fertschej, Bernhard Jilka Datum: 160302

Titel: rep_16030201_pr_afer_bj1a_eng_Materialmodelle.ppt

Standard Materialmodelle typische Implementierung

Quelle: Userdefined Interfaces in LSDYNA, T. Erhart (DYNAmore)

Seite: 4 / 22 Autor: Peter Reithofer, Artur Fertschej, Bernhard Jilka INPHYSICSWETRUST Datum: 160302 Titel: rep_16030201_pr_afer_bj1a_eng_Materialmodelle.ppt

- Elastisch
 - Elastisch → Glas
 - Hyper-elastisch → Elastomere, Schäume
 - Viskoelastisch → Kunststoffe, Kleber
 - Anisotrop mit Schädigung → Composites
- Elastisch-Plastisch
 - **Plastisch** \rightarrow Metalle (Aluminium Blech)
 - Anisotrop Plastisch → Metalle (Aluminium Profil)
 - Viskoplastisch → Kunststoffe
- Versagen / Schädigung

Quelle: Dissertation, J. M. Kaiser (Saarbrücken, 2013)

Autor: Peter Reithofer, Artur Fertschej, Bernhard Jilka Datum: 160302 Titel: rep_16030201_pr_afer_bj1a_eng_Mat<u>erialmodelle.pp</u>

Titel: rep_16030201_pr_afer_bj1a_eng_Materialmodelle.pp

Kurz- und langfaserverstärkte Kunststoffe typische Vorgehensweise – isotrope Materialkarten

- Messungen f
 ür L
 ängs- und Querrichtung
- Statisch und dynamische 3-Punkt-Biegung
- Reverse Engineering isotrope elastisch viskoplastische Materialkarte
 - Längs
 - Quer
 - gemittelt

karte η σ ε_{v} $E(\varepsilon_{e})$ M PP GF40

longitudinal diagonal perpendicular

Seite: 8 / 22 Autor: Peter Reithofer, Artur Fertschej, Bernhard Jilka Datum: 160302 Titel: rep_16030201_pr_afer_bj1a_eng_Materialmodelle.ppt

Standard Materialmodelle Composite Pauschal-Bruchkriterien

Versagensindex: "linke Seite der Gleichung"

 $\left(\frac{\sigma^{II}}{\sigma^{zul.II}_{Zug,Druck}}\right)^{-} + \left(\frac{\sigma^{\perp}}{\sigma^{zul.\perp}_{Zug,Druck}}\right)^{-} - \left(\frac{\sigma^{II}\sigma^{\perp}}{\sigma^{zul.II}_{Zug,Druck}}\right) + \left(\frac{\tau^{\#}}{\tau^{zul.\#}}\right)^{-} < 1$

- Hill: einzelne Ellipsoide
- Hoffmann: ein verschobenes Ellipsoid
- Tsai-Wu: verschobenes und gedrehtes Ellipsoid + Interaktionskoeff. gefährlich im Druckbereich

 $\sigma \parallel$

Standard Materialmodelle Hill Plastizität

"erweiterter" von Mises

$$\sigma_{\rm eq} = \sqrt{F(\sigma_{22} - \sigma_{33})^2 + G(\sigma_{33} - \sigma_{11})^2 + H(\sigma_{11} - \sigma_{22})^2 + 2L\sigma_{23}^2 + 2M\sigma_{31}^2 + 2N\sigma_{12}^2}$$

$$\begin{split} F &= \frac{(\sigma^0)^2}{2} (\frac{1}{\bar{\sigma}_{22}^2} + \frac{1}{\bar{\sigma}_{33}^2} - \frac{1}{\bar{\sigma}_{11}^2}) = \frac{1}{2} (\frac{1}{R_{22}^2} + \frac{1}{R_{33}^2} - \frac{1}{R_{11}^2}), \ L &= \frac{3}{2} (\frac{\tau^0}{\bar{\sigma}_{23}})^2 = \frac{3}{2R_{23}^2}, \\ G &= \frac{(\sigma^0)^2}{2} (\frac{1}{\bar{\sigma}_{33}^2} + \frac{1}{\bar{\sigma}_{11}^2} - \frac{1}{\bar{\sigma}_{22}^2}) = \frac{1}{2} (\frac{1}{R_{33}^2} + \frac{1}{R_{11}^2} - \frac{1}{R_{22}^2}), \ M &= \frac{3}{2} (\frac{\tau^0}{\bar{\sigma}_{13}})^2 = \frac{3}{2R_{13}^2}, \\ H &= \frac{(\sigma^0)^2}{2} (\frac{1}{\bar{\sigma}_{11}^2} + \frac{1}{\bar{\sigma}_{22}^2} - \frac{1}{\bar{\sigma}_{33}^2}) = \frac{1}{2} (\frac{1}{R_{11}^2} + \frac{1}{R_{22}^2} - \frac{1}{R_{33}^2}), \ N &= \frac{3}{2} (\frac{\tau^0}{\bar{\sigma}_{12}})^2 = \frac{3}{2R_{12}^2}, \end{split}$$

N

Quelle: Simulia Manual 2014

Seite: 10 / 22 Autor: Peter Reithofer, Artur Fertschej, Bernhard Jilka Datum: 160302 Titel: rep_16030201_pr_afer_bj1a_eng_Materialmodelle.ppt © 4a engineering GmbH, all rights reserved

w

Mikromechanik 3D Werkstoffdaten

N

- partikelverstärkte Thermoplaste
- kurzglasfaserverstärkte Thermoplaste
- Iangglasfaserverstärkte Thermoplaste
- endlosfaserverstärkte Kunststoffe
 GFK, CFK → UD, Gewebe

Seite: 11 / 22 Autor: Peter Reithofer, Artur Fertschej, Bernhard Jilka Datum: 160302 Titel: rep_16030201_pr_afer_bj1a_eng_Materialmodelle.ppt

Mikromechanik Einfluss Faserlänge und -orientierung

Einfluss der Faserlänge auf den E-Modul abhängig vom Orientierungsgrad

N

© 4a engineering GmbH, all rights reserve

w

Seite: 12 / 22 Autor: Peter Reithofer, Artur Fertschej, Bernhard Jilka Datum: 160302 Titel: rep_16030201_pr_afer_bj1a_eng_Materialmodelle.ppt

Mikromechanik

Versagen

N

Seite: 13 / 22 Autor: Peter Reithofer, Artur Fertschej, Bernhard Jilka Datum: 160302 Titel: rep_16030201_pr_afer_bj1a_eng_Mat<u>erialmodelle.ppt</u>

© 4a engineering GmbH, all rights reserved

W

Mikromechanik Einfluss Faserlänge und -orientierung

Anisotropes Verhalten - 3D Plot der Steifigkeit für unterschiedliche Faserorientierungsverteilungen dargestellt.

© 4a engineering GmbH, all rights reserved

Seite: 14 / 22 Autor: Peter Reithofer, Artur Fertschej, Bernhard Jilka Datum: 160302 Titel: rep_16030201_pr_afer_bj1a_eng_Materialmodelle.ppt

Mikromechanik Fallbeispiel Feuchte Polyamid

Einfluss der Feuchtigkeit auf die Matrix

N

Seite: 15 / 22 Autor: Peter Reithofer, Artur Fertschej, Bernhard Jilka Datum: 160302 Titel: rep_16030201_pr_afer_bj1a_eng_Materialmodelle.ppt

w

Mikromechanik Fallbeispiel Feuchte Polyamid

N

E

5

C

s

w

=

E-MODUL [MPa]

Seite: 16 / 22 Autor: Peter Reithofer, Artur Fertschej, Bernhard Jilka Datum: 160302

Titel: rep_16030201_pr_afer_bj1a_eng_Materialmodelle.ppt

Mikromechanik Fallbeispiel Feuchte Polyamid

п

N

E

н

S

C

s

w

Ξ

Zugfestigkeit [MPa]

Seite: 17 / 22 Autor: Peter Reithofer, Artur Fertschej, Bernhard Jilka Datum: 160302

Titel: rep_16030201_pr_afer_bj1a_eng_Materialmodelle.ppt

Titel: rep_16030201_pr_afer_bj1a_eng_Materialmodelle.pp

Mikromechanik Eshelby Tensor

- 1: e^t Stress free, uniform transformation strain
- $\underline{\varepsilon}^{C} = \underline{\underline{E}} \underline{\varepsilon}^{T}$ 2: e^c uniform, constrained strain 3: E für isotrope und transversalisotrope Matrix analytisch; für anisotrope Matrix nur numerisch bestimmbar
 - 4: $E = f(I/d=a, S^{matrix})$

Titel: rep_16030201_pr_afer_bj1a_eng_Materialmodelle.ppt

Mikromechanik Konzentrationstensoren

Dehnungs- und Spannungsfeld in der Faser sind konstant !!

B,A nicht-symm. und transv.-isotrop

N

Sette: 20 / 22 Autor: Peter Reithofer, Artur Fertschej, Bernhard Jilka Datum: 160302 Titel: rep_16030201_pr_afer_bj1a_eng_Materialmodelle.ppt

Mikromechanik Workflow Materialmodell

© 4a engineering GmbH, all rights reserved

Seite: 21 / 22 Autor: Peter Reithofer, Artur Fertschej, Bernhard Jilka Datum: 160302 Titel: rep_16030201_pr_afer_bj1a_eng_Materialmodelle.pp

Übersicht Parameteranzahl

		Elastic	Yielding	Hardening	Σ	Direction	FO
Standard	Elastisch	2			2	Зx	n.A.
	Von Mises (J2)	2	1	4	7	Зx	n.A.
	Drucker Prager	2	2 (3)	4	8 (9)	Зx	n.A.
	SAMP	2	4 (6)	4 (11)	10 (19)	Зx	n.A.
	Orthotrop	9			9	1x	n.A.
	Hill	9	6	4	19	1x	n.A.
MMEC	Matrix (J2)	2	1	4	7	Lokale Eigenschaften	
	Faser	2			2		

(n.A.) UNTERSCHIEDLICHE FO VERSUCHSTECHNISCH NICHT MÖGLICH

S

S

w

N

© 4a engineering GmbH, all rights reserve

Seite: 22 / 22 Autor: Peter Reithofer, Artur Fertschej, Bernhard Jilka Datum: 160302 <u>Titel: rep_16030</u>201_pr_afer_bj1a_eng_Materialmodelle.ppt