COMPOSITES IN DER HOCHSPANNUNGSISOLATION

4a Technologietag 2016

HOCHSPANNUNGSMASCHINEN

$\langle 1kV \Rightarrow 1kV - 30kV \Rightarrow \rangle > 30kV$

- Motoren/Generatoren
 - Wechselstrommaschinen (AC)
 - asynchron
 - synchron
 - umrichterbetrieben
 - Gleichstrommaschinen (DC)

ROTIERENDE ELEKTRISCHEN MASCHINEN

Generatoren

Zum größten Teil werden in elektrischen Kraftwerken 3-Phasen AC Synchrongeneratoren zur Stromerzeugung eingesetzt.

Es wird unter zwei prinzipielle Typen von Generatoren unterschieden:

Turbogeneratoren:

angetrieben durch einen thermischen Prozess (z.B.: GuD)

Stator (Vollpol)

ROTIERENDE ELEKTRISCHEN MASCHINEN

Generatoren

Wasserkraftgeneratoren:

angetrieben durch Wasserturbinen

WICKLUNGSTYPEN – STATOR

Formspulen

- Rechteckige Leiter
- Vorgeformte Spulen \rightarrow Diamant Form
- Bis zu 15 kV Betriebsspannung
- Motoren & Generatoren von 50 bis 100 MVA

WICKLUNGSTYPEN – STATOR Roebelstäbe

- Rechteckige Leiter
- An Kunden angepasstes Design (Luft, Wasser, Wasserstoff Kühlkanäle)
- Großgeneratoren > 50 MW
- Mechanisch fester

ENTWICKLUNG DER ISOLATIONSDICKEN

Adapted from: C. N. Glew: "The Next Generation – A Review of the factors influencing the output of electrical machines in the new millennium", INSUCON/ISOTEC 1998

ISOLIERBÄNDER FÜR HV MASCHINEN

- Glimmerpapier
- Träger (Glasgewebe, Folie, Vlies)
- Bindeharz

	Unit	Mica	E-glass	EP or UP resin	
Electrical field strength at 20°C	kV/mm	60 - 200	10 - 40	20 - 45	
Thermal conductivity	W/mK	0.25 - 1.7	1.0	0.12 - 0.2	
Specific electrical resistance	Ωcm	$10^{14} - 10^{17}$	$> 10^{10}$	$10^{13} - 10^{16}$	
Mechanical properties		\downarrow	↑	\leftrightarrow	
Melting point or Tg [*]	°C	1200	840	80 - 180	

VPI - HV STATOR ISOLATIONSSYSTEM

PRÜFEN UND TESTEN

Prüfungen am Isolationssystems

Kurzzeitprüfungen:

- Kapazität
- Verlustfaktor (power factor)
- Durchschlagspannung
- Teilentladungen (TE)
- Isolationswiderstand

Langzeitprüfungen:

- Dauerspannungstest
- Thermisch zyklieren, altern
- Multistresstest (TEAM stress)

Bei Isovolta können zwei unterschiedliche thermische Zykliervarianten durchgeführt werden:

- Thermozyklierung in Anlehnung an IEEE 1310
- IPV (interne Pr
 üfvorschrift)

THERMISCH ZYKLIEREN NACH IPV Aufwärmen im Ofen (90 min.) – Haltezeit 120 min. – Abkühlen auf RT

THERMISCH ZYKLIEREN NACH IEEE1310

Langzeittest mit diagnostischen Prüfungen

Während des Zyklierprozesses werden verschieden Prüfungen durchgeführt: Messungen nach definierter Zyklenanzahl (z.B.: 10, 50, 100, 250,...)

- Stehspannungsprüfung
- Verlustfaktor (power factor)
- TE Messung
- Optische, mechanische Kontrolle
- Delamination

AUFBAU EINES PRÜFSTABES

ANALYSE Nach aufschneiden "Ablösung falsch"

Ausdrücken des Leiters: hier falsches Ergebnis (schwächste Stelle zwischen leitfähiger Schicht und Hauptisolation)

ANALYSE Nach aufschneiden "Ablösung richtig"

Ausdrücken des Leiters: hier richtiges Ergebnis (schwächste Stelle zwischen Leiter und Unterwickel)

DANKE FÜR IHRE AUFMERKSAMKEIT!

Composites in der Hochspannungsisolation – PART2

Plausibilisierung durch Materialcharakterisierung und Simulation

R. Dornhofer (Isovolta AG), Ch. Weinberger (4a engineering GmbH)

ISOVOLTA GROUP A-8402 Werndorf

N

4a engineering GmbH Industriepark 1 8772 Traboch

VA

Seite: 1 / 17 Autor: Christoph Weinberger, Michael Rollant, Peter Reithofer Datum: 160224 Titel: rep 16022401 cwei mr pr eng HIGHVOLTAGE-TT16.ppt

Materialcharakterisierung und Simulation Inhalt

- Versuchsprogramm
- Bestimmung der mechanischen Eigenschaften der Einzelschichten
 - Harz, Glas und MICA (Glimmer)
 - Validierungen der Eigenschaften
 - Eigenschaftsvisualisierung E-Modul und Alpha
- Mechanische Eigenschaften des Verbundes
- Scherfestigkeit (τ_{ILSS})
- Aufbau Simulationsmodell
- Simulation der Isolierung ohne Kupferstab
- Darstellung der Ergebnisse aus der Simulation
- Variantenbetrachtungen und abgeleitete Produktverbesserungen

Quelle: Wikipedia

Versuchsprogramm und Messergebnisse

N

- 3 bereitgestellte Materialien (120x120 Platten):
 - Glas parallel
 - Calmicaglas parallel und kreuz
 - Calmicafab parallel und kreuz
- Prüfprogramm
 - 3 Punkt Biegung (quasistatisch)
 - Raumtemperatur und Hochtemperatur (155°C)
 - Kurzbiegung (Scherfestigkeit)

Seite: 3 / 17 Autor: Christoph Weinberger, Michael Rollant, Peter Reithofer Datum: 160224 <u>Titel: rep_16022401_cwei_mr_pr_eng_HIGHVOLTAGE-TT16.ppt</u>

Messergebnis 3-Punkt-Biegung, Glas parallel

Randfaserspannung/-dehnung

Der Glasverbund (30 Schichten parallel) zeigt die Richtungsabhängigkeit in Kett- (26 Fäden), Schuss- (15 Fäden) und Diagonalrichtung (Harz)

N

Seite: 4 / 17 Autor: Christoph Weinberger, Michael Rollant, Peter Reithofer Datum: 160224 Titel: rep_16022401_cwei_mr_pr_eng_HIGHVOLTAGE-TT16.pptx

Messergebnis 3-Punkt-Biegung, Calmicaglas parallel

Randfaserspannung/-dehnung

- Richtungsabhängigkeit geht verloren
- Festigkeit des Verbundes bei erhöhter Temperatur geringer

N

v

Seite: 5 / 17 Autor: Christoph Weinberger, Michael Rollant, Peter Reithofer Datum: 160224 Titel: rep_16022401_cwei_mr_pr_eng_HIGHVOLTAGE-TT16.pptx

Eigenschaften der Einzelschichten Harz, Glas

Aus dem Glasverbund (30 Schichten parallel) wurden Dichten und E-Modul von Harz und Glas auf Basis von Literaturkennwerten gesetzt.

N

> Harz: Dichte 1200 g/dm³, Elastizitätsmodul 3500 MPa, α 55e-6 1/K

Seite: 6 / 17

Datum: 160224

Autor: Christoph Weinberger, Michael Rollant, Peter Reithofer

Titel: rep_16022401_cwei_mr_pr_eng_HIGHVOLTAGE-TT16.pptx

 \succ Glas: Dichte 2500 g/dm³, Elastizitätsmodul 71000 MPa, Festigkeit 1700 MPa, lpha 5e-6 1/K A

GROUP

Eigenschaften der Einzelschichten Harz, Glas Gewebe

Mit der micromechanischen Betrachtung in 4a Micromec zeigt sich die Richtungsabhängigkeit des Glasgewebes hinsichtlich Steifigkeit (E-Modul linkes Bild) und thermischen Ausdehnungskoeffizienten (rechtes Bild).

N

ERING

Eigenschaften der Einzelschichten

CG4202: Harz, Glas und MICA

Am Verbund CG4202 wurde die MICA-Schicht auf Basis von Literaturkennwerten gesetzt:

- > MICA: Dichte 2500 g/dm³, Elastizitätsmodul 125000 MPa, α 6e-6 1/K
- Reines MICA Elastizitätsmodul ~170 GPA
- Reines MICA Druckfestigkeit 190-280 MPa, Scherfestigkeit 215-265 MPa

N

Eigenschaften der Einzelschichten Calmicaglas: Harz, Glas und MICA

Durch die nun enthaltene sehr dominante Micaschicht im Verbund Calmicaglas zeigt sich in der Ebene kaum eine Richtungsabhängigkeit hinsichtlich Steifigkeit (E-Modul linkes Bild) und thermischen Ausdehnungskoeffizienten (rechtes Bild).

N

Seite: 9 / 17 Autor: Christoph Weinberger, Michael Rollant, Peter Reithofer Datum: 160224 Titel: rep_16022401_cwei_mr_pr_eng_HIGHVOLTAGE-TT16.ppt>

3-Punkt-Kurzbiegung, Calmicaglas parallel τ_{ILSS} / Dehnung bei RT

Deutlich zu erkennen ist das interlaminare Scherversagen in den Kurzbiegeproben (Bild) bei Raumtemperatur.

N

E

S

W

Ξ

Seite: 10 / 17 Autor: Christoph Weinberger, Michael Rollant, Peter Reithofer Datum: 160224 Titel: rep_16022401_cwei_mr_pr_eng_HIGHVOLTAGE-TT16.pptx

Simulation – Lagenaufbau Validierung 4rtel-Modell

- Darf man den Roebelstab auf ein flaches 4rtel Modell reduzieren ohne Effekte zu verlieren?
- Um diese Frage zu beantworten werden vorab einige Modelle aufgebaut, schrittweise vereinfacht und die Ergebnisse verglichen:

- Reduzierung der Elementanzahl von ~1.2Mio auf ca. 200.000 ohne
 Verlust an Informationen (vergleichbare Ergebnisse)
- Rechenzeit ca. 1h

Simulation – Lagenaufbau Allgemein

Kupfer-Kern (8200 Elemente)

Seite: 12 / 17

Datum: 160224

Autor: Christoph Weinberger, Michael Rollant, Peter Reithofer

Titel: rep_16022401_cwei_mr_pr_eng_HIGHVOLTAGE-TT16.pptx

- Isolierung die aus MICA + GFK (SOLID-LAMINATE; 100.000 200.000 Elemente je nach #Lagen)
- Lagen mittels LAMINATE-Tool im ANSA flexibel aufgebaut werden.

Randbedingungen: Symmetriebedingungen (Ausdehnung in der Schnittebene erlaubt)

N

> Hohe **Flexibilität** durch automatisch generiertes Netz

© 4a engineering GmbH, all rights reserve

Simulation – Lagenaufbau Thermischer Lastfall

Lastfall: Aushärten des Stabes bei 130°C – Abkühlung auf RT – Betrieb bei 155°C

Die Spannungen werden an den beiden kritischen Punkten P1 und P2 ausgewertet. P1 stellt die Raumtemperatur (20°C) dar und P2 die Betriebstemperatur von 155°C.

N

Seite: 13 / 17 Autor: Christoph Weinberger, Michael Rollant, Peter Reithofer Datum: 160224 <u>Titel: rep_16022401_cwei_mr_pr_eng_HIGHVOLTAGE-TT16.ppt</u>

Simulationsergebnisse Isolierung ohne Kupferstab

Simulationsergebnisse Calmicaglas P1

П

N

P

н

C

E

S

W

E

© 4a engineering GmbH, all rights reserved

U

S

Seite: 15 / 17 Autor: Christoph Weinberger, Michael Rollant, Peter Reithofer Datum: 160224

Titel: rep_16022401_cwei_mr_pr_eng_HIGHVOLTAGE-TT16.pptx

Simulationsergebnisse Übersicht - Varianten

- Eine Reihe an Varianten wurden gerechnet um unterschiedlichste Auswirkungen auf das Spannungsniveau zu zeigen
- Dabei wurde die Anzahl der Schichten,
 Schichtdicken oder Zwischenschichten variiert

[RT 20°C				HT 155°C					
	sigma x		sigma z		tau zx	sigma x		sigma z		tau zx
	max	min	max	min	abs	max	min	max	min	abs
SIM15_	42	-248	78	-0.5	13	49	-5	0	-17	3.2
SIM16_	42	-247	78	-0.5	13	49	-5	0	-17	3.2
SIM17_	42	-249	78	-0.5	13	49	-5	0	-17	3.3
SIM40_	40	-233	89	-0.4	16	46	-5	0	-19	3.6
SIM43_	40	-233	89	-0.4	16	47	-5	0	-19	3.6
SIM44_	39	-232	88	-0.4	16	47	-5	0	-19	3.5
SIM15_	42	-248	78	-0.5	13	49	-5	0	-17	3.2
SIM18_	40	-257	75	-0.5	14.6	51	-5	0	-16	3.7
SIM20_	42	-251	79	-0.5	15	51	-6	0	-17	3.8
SIM23_	59	-254	112	-1	19	48	-9	0	-22	4.3
SIM24_	27	-244	49	-0.4	7.6	51	-2	0	-11	2.2
SIM40_	40	-233	89	-0.4	16	46	-5	0	-19	3.6
SIM46_	55	-199	118	-0.3	24	42	-8	0	-25	5
SIM49_	41	-205	89	-0.3	18	44	-5	0	-20	3.8
SIM15_	42	-248	78	-0.5	13	49	-5	0	-17	3.2
SIM19_	37	-230	58	-0.6	14	45	-4	0	-13	3.4
SIM22_	31	-80	5	-0.3	2	12	-12	0	-1	0.5
SIM40_	40	-233	89	-0.4	16	46	-5	0	-19	3.6
SIM45_	33	-215	63	-0.5	16	43	-4	0	-14	3.8
SIM48_	38	-63	5	-0.3	2.1	11	-12	0	-1	0.5

....Spannungen in MPa

N

Seite: 16 / 17 Autor: Christoph Weinberger, Michael Rollant, Peter Reithofer Datum: 160224

Titel: rep_16022401_cwei_mr_pr_eng_HIGHVOLTAGE-TT16.pptx

Lagenaufbau Zusammenfassung

- Durch die Materialcharakterisierung wurden die thermomechanischen Eigenschaften der einzelnen Materialien erarbeitet
- Die wesentliche Erkenntnis daraus war die hohe Steifigkeit des Verbundes aufgrund der Micaschichten und der damit verbundene Relevanz-Verlust des Glasgewebes
- Orientierung vom GLAS aufgrund der geringen Steifigkeit im Vergleich zur MICA Schicht vernachlässigbar
- Die Simulation zeigt das Spannungsniveau und die Verformungen aufgrund der thermomechanischen Eigenschaften und schafft so mehr Verständnis dafür was im Betrieb geschieht
- Durch die Betrachtung von Varianten werden Ideen zur Verbesserung des Produktes generiert

N

