COMPOSITES IN DER HOCHSPANNUNGSISOLATION

4a Technologietag 2016

HOCHSPANNUNGSMASCHINEN

HOCHSPANNUNGSMASCHINEN

Rotierende elektrische Maschinen

- Motoren/Generatoren
 - Wechselstrommaschinen (AC)
 - asynchron
 - synchron
 - umrichterbetrieben

Gleichstrommaschinen (DC)

ROTIERENDE ELEKTRISCHEN MASCHINEN

Generatoren

Zum größten Teil werden in elektrischen Kraftwerken 3-Phasen AC Synchrongeneratoren zur Stromerzeugung eingesetzt.

Es wird unter zwei prinzipielle Typen von Generatoren unterschieden:

Turbogeneratoren:

angetrieben durch einen thermischen Prozess (z.B.: GuD)

ROTIERENDE ELEKTRISCHEN MASCHINEN

Generatoren

Wasserkraftgeneratoren:

angetrieben durch Wasserturbinen

Rotor (Schenkelpol)

Stator

WICKLUNGSTYPEN – STATOR

Formspulen

- Rechteckige Leiter
- Vorgeformte Spulen → Diamant Form
- Bis zu 15 kV Betriebsspannung
- Motoren & Generatoren von 50 bis 100 MVA

WICKLUNGSTYPEN - STATOR

Roebelstäbe

- Rechteckige Leiter
- An Kunden angepasstes Design (Luft, Wasser, Wasserstoff Kühlkanäle)
- Großgeneratoren > 50 MW
- Mechanisch fester

ENTWICKLUNG DER ISOLATIONSDICKEN

Adapted from: C. N. Glew: "The Next Generation – A Review of the factors influencing the output of electrical machines in the new millennium", INSUCON/ISOTEC 1998

ANFORDERUNGEN AN DAS EIS

ISOLIERBÄNDER FÜR HV MASCHINEN

- Glimmerpapier
- Träger (Glasgewebe, Folie, Vlies)

EIGENSCHAFTEN DER ROHSTOFFE

	Unit	Mica	E-glass	EP or UP resin
Electrical field strength at 20°C	kV/mm	60 - 200	10 - 40	20 - 45
Thermal conductivity	W/mK	0.25 - 1.7	1.0	0.12 - 0.2
Specific electrical resistance	Ω cm	10 ¹⁴ - 10 ¹⁷	$> 10^{10}$	10 ¹³ - 10 ¹⁶
Mechanical properties		↓	↑	\leftrightarrow
Melting point or Tg^*	°C	1200	840	80 – 180

VPI - HV STATOR ISOLATIONSSYSTEM

PRÜFEN UND TESTEN

Prüfungen am Isolationssystems

Kurzzeitprüfungen:

- Kapazität
- Verlustfaktor (power factor)
- Durchschlagspannung
- Teilentladungen (TE)
- Isolationswiderstand

Langzeitprüfungen:

- Dauerspannungstest
- Thermisch zyklieren, altern
- Multistresstest (TEAM stress)

THERMISCH ZYKLIEREN

Bei Isovolta können zwei unterschiedliche thermische Zykliervarianten durchgeführt werden:

- Thermozyklierung in Anlehnung an IEEE 1310
- IPV (interne Prüfvorschrift)

THERMISCH ZYKLIEREN NACH IPV

Aufwärmen im Ofen (90 min.) – Haltezeit 120 min. – Abkühlen auf RT

THERMISCH ZYKLIEREN NACH IEEE1310

Langzeittest mit diagnostischen Prüfungen

Während des Zyklierprozesses werden verschieden Prüfungen durchgeführt:

Messungen nach definierter Zyklenanzahl (z.B.: 10, 50, 100, 250,...)

- Stehspannungsprüfung
- Verlustfaktor (power factor)
- TE Messung
- Optische, mechanische Kontrolle
- Delamination

AUFBAU EINES PRÜFSTABES

Nach aufschneiden "Ablösung falsch"

Ausdrücken des Leiters: hier falsches Ergebnis (schwächste Stelle zwischen leitfähiger Schicht und Hauptisolation)

Nach aufschneiden "Ablösung richtig"

Ausdrücken des Leiters: hier richtiges Ergebnis (schwächste Stelle zwischen Leiter und Unterwickel)

DANKE FÜR IHRE AUFMERKSAMKEIT!

Composites in der Hochspannungsisolation – PART2

Plausibilisierung durch Materialcharakterisierung und Simulation

R. Dornhofer (Isovolta AG), Ch. Weinberger (4a engineering GmbH)

ISOVOLTA GROUP A-8402 Werndorf

4a engineering GmbH Industriepark 1 8772 Traboch

© 4a engineering GmbH, all rights reserved

Materialcharakterisierung und Simulation Inhalt

- Versuchsprogramm
- Bestimmung der mechanischen Eigenschaften der Einzelschichten
 - Harz, Glas und MICA (Glimmer)
 - Validierungen der Eigenschaften
 - Eigenschaftsvisualisierung E-Modul und Alpha
- Mechanische Eigenschaften des Verbundes
- \triangleright Scherfestigkeit (τ_{ILSS})
- Aufbau Simulationsmodell
- Simulation der Isolierung ohne Kupferstab
- Darstellung der Ergebnisse aus der Simulation
- Variantenbetrachtungen und abgeleitete Produktverbesserungen

Quelle: Wikipedia

4a engineering GmbH, all rights reserved

Versuchsprogramm und Messergebnisse

- 3 bereitgestellte Materialien (120x120 Platten):
 - Glas parallel
 - Calmicaglas parallel und kreuz
 - Calmicafab parallel und kreuz
- Prüfprogramm
 - 3 Punkt Biegung (quasistatisch)
 - Raumtemperatur und Hochtemperatur (155°C)
 - Kurzbiegung (Scherfestigkeit)

Messergebnis 3-Punkt-Biegung, Glas parallel

Randfaserspannung/-dehnung

v ₀ [m/s]	l _w [mm]	m _{Pendular} [g]	b [mm]	t [mm]	l [mm]
0.001	39.95	0	15.14	1.26	60.27
0.001	39.95	0	15.16	1.40	59.75
0.001	39.95	0	15.16	1.51	60.35

RT Schuss RT Kette RT Diagonal

Der Glasverbund (30 Schichten parallel) zeigt die Richtungsabhängigkeit in Kett- (26 Fäden), Schuss- (15 Fäden) und Diagonalrichtung (Harz)

© 4a engineering GmbH, all rights reserve

Messergebnis 3-Punkt-Biegung, Calmicaglas parallel

Randfaserspannung/-dehnung

v ₀ [m/s]	l _w [mm]	m _{Pendular} [g]	b [mm]	t [mm]	l [mm]
0.001	39.95	0	15.01	1.04	60.20
0.001	39.95	0	14.95	1.07	59.60
0.001	39.95	0	15.01	1.06	60.23
0.001	39.95	0	14.98	1.06	59.49

RT Schuss RT Kette HT Schuss HT Kette

- Richtungsabhängigkeit geht verloren
- Festigkeit des Verbundes bei erhöhter Temperatur geringer

Harz, Glas

v ₀ [m/s]	l _w [mm]	m _{Pendular} [g]	b [mm]	t [mm]	l [mm]
0.001	39.95	0	15.13	1.24	60.29
0.001	39.95	0	15.15	1.43	60.25
0.001	39.95	0	15.16	1.51	60.35

Solver: LS DYNA, Metamodell: 7500 MAT22, Elementgröße: 2mm, Elementtyp:16: Fully integrated shell element (very fast), Anzahl der

Integrationspunkte: 60

Annahmen: Querk. 0.35, Reibk. 0.1

- Aus dem Glasverbund (30 Schichten parallel) wurden Dichten und E-Modul von Harz und Glas auf Basis von Literaturkennwerten gesetzt.
 - Harz: Dichte 1200 g/dm³, Elastizitätsmodul 3500 MPa, α 55e-6 1/K
 - \triangleright Glas: Dichte 2500 g/dm³, Elastizitätsmodul 71000 MPa, Festigkeit 1700 MPa, α 5e-6 1/K

4 C ENGINEERING

Harz, Glas Gewebe

Mit der micromechanischen Betrachtung in 4a Micromec zeigt sich die Richtungsabhängigkeit des Glasgewebes hinsichtlich Steifigkeit (E-Modul linkes Bild) und thermischen Ausdehnungskoeffizienten (rechtes Bild).

4a engineering GmbH, all rights reserved

CG4202: Harz, Glas und MICA

Solver: LS DYNA, Metamodell: P:\isv qff HIGHVOLTAGE\G-Material-und-Bauteilpr fung\a-Materialpr fung\P1-Pr fungxx-vomyymmdd\usermat\15100701_qff_mr_CG420240Layer.inp, Elementgröße:

Elementtyp:16: Fully integrated shell element (very fast), Anzahl der

Integrationspunkte: 40 Annahmen: Querk. 0.35, Reibk. 0.1

MICA 125 GPa

- Am Verbund CG4202 wurde die MICA-Schicht auf Basis von Literaturkennwerten gesetzt:
 - MICA: Dichte 2500 g/dm³, Elastizitätsmodul 125000 MPa, α 6e-6 1/K
 - Reines MICA Elastizitätsmodul ~170 GPA
 - Reines MICA Druckfestigkeit 190-280 MPa, Scherfestigkeit 215-265 MPa

Calmicaglas: Harz, Glas und MICA

Durch die nun enthaltene sehr dominante Micaschicht im Verbund Calmicaglas zeigt sich in der Ebene kaum eine Richtungsabhängigkeit hinsichtlich Steifigkeit (E-Modul linkes Bild) und thermischen Ausdehnungskoeffizienten (rechtes Bild).

Modul

[MPa]

35050

32513

29977 27441

24904

22368

19832

14759

12223

Viewpoint

3-Punkt-Kurzbiegung, Calmicaglas parallel

4 CI

 τ_{ILSS} / Dehnung bei RT

v ₀	l _w	m _{Pendular}	b	t	l
[m/s]	[mm]	[g]	[mm]	[mm]	[mm]
0.00002	10.08	0	15.08	0.96	29.28

Material	Mit	telwert max. $ au_{ILSS}$
4202 parallel		14,58
2_S3_1		14,40
2_S4_1		14,41
2 S5 1		14,91

Deutlich zu erkennen ist das interlaminare Scherversagen in den Kurzbiegeproben (Bild) bei Raumtemperatur.

4a engineering GmbH, all rights reserved

Simulation – Lagenaufbau

Validierung 4rtel-Modell

- A C ENGINEERING
- Darf man den Roebelstab auf ein flaches 4rtel Modell reduzieren ohne Effekte zu verlieren?
- Um diese Frage zu beantworten werden vorab einige Modelle aufgebaut, schrittweise vereinfacht und die Ergebnisse verglichen:

- Reduzierung der Elementanzahl von ~1.2Mio auf ca. 200.000 ohne
 Verlust an Informationen (vergleichbare Ergebnisse)
- Rechenzeit ca. 1h

Simulation – Lagenaufbau

Allgemein

ENGINEERING Graph

- Kupfer-Kern (8200 Elemente)
- Isolierung die aus MICA + GFK (SOLID-LAMINATE; 100.000 –
 200.000 Elemente je nach #Lagen)
- Lagen mittels **LAMINATE-Tool** im ANSA flexibel aufgebaut werden.

- Randbedingungen: Symmetriebedingungen (Ausdehnung in der Schnittebene erlaubt)
- Hohe Flexibilität durch automatisch generiertes Netz

© 4a engineering GmbH, all rights reserved

Simulation – Lagenaufbau

Thermischer Lastfall

A CINEERING

Lastfall: Aushärten des Stabes bei 130°C – Abkühlung auf RT – Betrieb bei 155°C

Die Spannungen werden an den beiden kritischen Punkten P1 und P2 ausgewertet. P1 stellt die Raumtemperatur (20°C) dar und P2 die Betriebstemperatur von 155°C.

Simulationsergebnisse

Isolierung ohne Kupferstab

Um ein besseres Verständnis zu bekommen warum gewisse Spannungen entstehen, wurde eine Simulation der Isolierung ohne Kupferkern

durchgeführt:

Fringe Levels 3.247e+01 2.883e+01 2.519e+01 2.155e+01 1.790e+01 1.426e+01 1.062e+01 6.978e+00 3.336e+00 -3.062e-01 -3.948e+00 -7.591e+00 -1.123e+01 -1.487e+01 -1.852e+01 -2.216e+01 -2.580e+01 -2.944e+01 -3.309e+01 -3.673e+01 -4.037e+01 -4.401e+01 -4.765e+01 -5.130e+01 -5.494e+01 -5.858e+01 -6.222e+01 -6.587e+01 -6.951e+01 -7.315e+01 -7.679e+01

- Skalierung der Verformung: Faktor 50
- Bild rechts zeigt die Verformung mit Kupfer als Vergleich

Simulationsergebnisse

Calmicaglas P1

© 4a engineering GmbH, all rights reserved

-1.292e+01

Simulationsergebnisse

Übersicht - Varianten

- Eine Reihe an Varianten wurden gerechnet um unterschiedlichste Auswirkungen auf das Spannungsniveau zu zeigen
- Dabei wurde die Anzahl der Schichten, Schichtdicken oder Zwischenschichten variiert

	RT 20°C						HT 155°C				
	sigma x			sigma z		tau zx	sigma x		sigma z		tau zx
	max	min		max	min	abs	max	min	max	min	abs
SIM15_	4	12	-248	78	-0.5	13	49	-5	0	-17	3.2
SIM16_	4	12	-247	78	-0.5	13	49	-5	0	-17	3.2
SIM17_	4	12	-249	78	-0.5	13	49	-5	0	-17	3.3
SIM40_	4	10	-233	89	-0.4	16	46	-5	0	-19	3.6
SIM43_	4	10	-233	89	-0.4	16	47	-5	0	-19	3.6
SIM44_	3	39	-232	88	-0.4	16	47	-5	0	-19	3.5
SIM15_	4	12	-248	78	-0.5	13	49	-5	0	-17	3.2
SIM18_	4	10	-257	75	-0.5	14.6	51	-5	0	-16	3.7
SIM20_	4	12	-251	79	-0.5	15	51	-6	0	-17	3.8
SIM23_		59	-254	112	-1	19	48	-9	0	-22	4.3
SIM24_	1	27	-244	49	-0.4	7.6	51	-2	0	-11	2.2
SIM40_	4	10	-233	89	-0.4	16	46	-5	0	-19	3.6
SIM46_		55	-199	118	-0.3	24	42	-8	0	-25	5
SIM49_	4	11	-205	89	-0.3	18	44	-5	0	-20	3.8
SIM15	4	12	-248	78	-0.5	13	49	-5	0	-17	3.2
SIM19	3	37	-230	58	-0.6	14	45	-4	0	-13	3.4
SIM22	3	31	-80	5	-0.3	2	12	-12	О	-1	0.5
SIM40	4	10	-233	89	-0.4	16	46	-5	0	-19	3.6
SIM45	3	33	-215	63	-0.5	16	43	-4	0	-14	
SIM48		38	-63	5	-0.3	2.1	11	-12	0		0.5
JUNI40		,0	-03	3	-0.5	2.1	11	-12	- 0	-1	0.3

...Spannungen in MPa

© 4a engineering GmbH, all rights reserve

Lagenaufbau

Zusammenfassung

- Durch die Materialcharakterisierung wurden die thermomechanischen Eigenschaften der einzelnen Materialien erarbeitet
- Die wesentliche Erkenntnis daraus war die hohe Steifigkeit des Verbundes aufgrund der Micaschichten und der damit verbundene Relevanz-Verlust des Glasgewebes
- Orientierung vom GLAS aufgrund der geringen Steifigkeit im Vergleich zur MICA Schicht vernachlässigbar
- Die Simulation zeigt das Spannungsniveau und die Verformungen aufgrund der thermomechanischen Eigenschaften und schafft so mehr Verständnis dafür was im Betrieb geschieht
- Durch die Betrachtung von Varianten werden Ideen zur Verbesserung des Produktes generiert

© 4a engineering GmbH, all rights reserved