

Substitution von Rotguss durch tribologisch modifizierte Polymere bei Gleitgewindetrieben

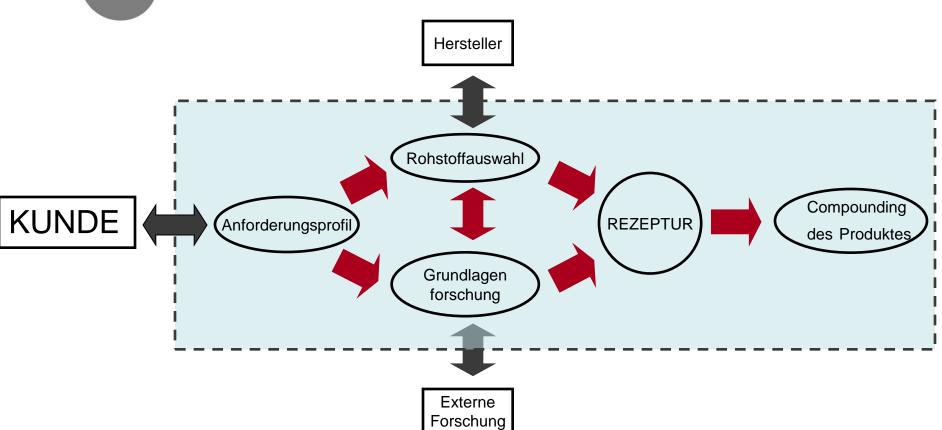
4a Technologietag 2016

25.02.2016

INHALT


- Einleitung
 - Vorstellung Advanced Polymer Compounds
 - Projektteam
 - Gleitgewindetriebe
- - Werkstoffauswahl
 - Werkstoffmodifikation
 - Optimierung
- Anwendungen

Entwicklung


- 2002 2005
 - Dienstleistungsbüro in Leoben
 - Von 2002-2004 im Rahmen des ZAT
- Ab Juni 2005
 - Inbetriebnahme einer Compoundinglinie

Entwicklungsprojekte mit A.P.C *Typischer Ablauf*

EraSME Projekt Tribocompound Projektpartner

Gleitgewindetriebe

Kombination aus Gewindespindel und Gewindemutter zur Umsetzung einer Drehbewegung in eine Längsbewegung

Gleitgewindetriebe Bewertung als Antriebselement

Vorteile

- Robust und bewährt
- Einfach und preiswert herzustellen
- Meist selbsthemmend (Steigungsabhängig)
- Hohe statische Traglast

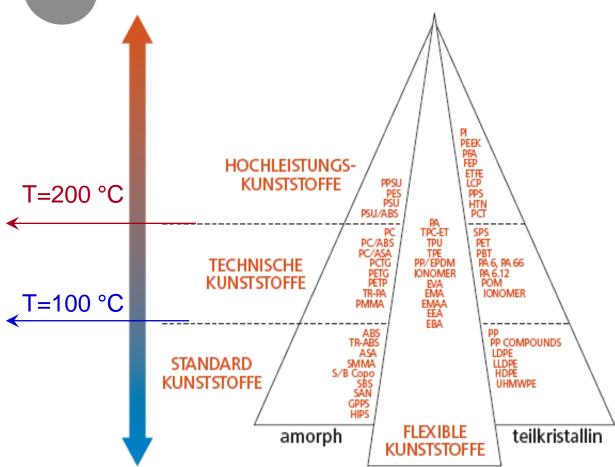
Nachteile

- Schlechter Wirkungsgrad
- Benötigen Schmierung
- Bei Einsatz von Rotguss geringe, sonst kaum Notlaufeigenschaften
- Probleme mit RohS Konformität bei Verwendung von Rotguss

Werkstoffauswahl Potentielle thermoplastische Matrixwerkstoffe

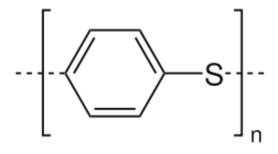
Zielsetzung

- Betriebstemperatur bis T=80°C
- Ausgewogene tribologische Eigenschaften
- Temperaturunabhängige Eigenschaften
- Chemikalienbeständigkeit (unterschiedliche Anwendungen!!)


Potentielle Matrixwerkstoffe

- Polyphenylensulfid (PPS)
- Polyamide
 - PA 6, 66
- Polyoxymethylen (POM)

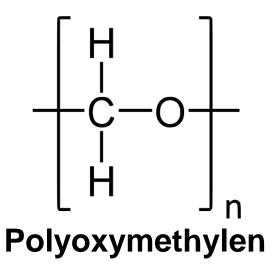
Werkstoffauswahl *Matrixpolymer Thermoplastfamilien*



Werkstoffauswahl Polyphenylensulfid (PPS)

EIGENSCHAFTEN

- Chemikalienbeständig
- Heißwasserbeständig
- Wärmeformbeständig bis T=250 °C (mit 40 % GF)
- Hochkristallin
- Flammwidrig
- ? Kosten


Polyphenylensulfid

Werkstoffauswahl Polyoxymethylen

EIGENSCHAFTEN

- Niedrige Wasseraufnahme
- Formbeständig
- Gute Gleiteigenschaften
- Hochkristallin
- ? Modifizierbar
- ? Säurebeständigkeit
- ? UV-Beständigkeit
- ? Genügend hohe Temperaturbeständigkeit

Werkstoffauswahl *Polyamide*

EIGENSCHAFTEN

- Festigkeiten bis 200 MPa (bei 40 % GF Gehalt
- Formstabil
- Abriebfest (Lagerwerkstoff)
- Bedingt chemikalienbeständig
- Bedingt heißwasserbeständig

Polyamid 6

- ? Hydrolyse/Chemikalienbeständigkeit
- ? Dimensionsstabilität

Polyamid 66

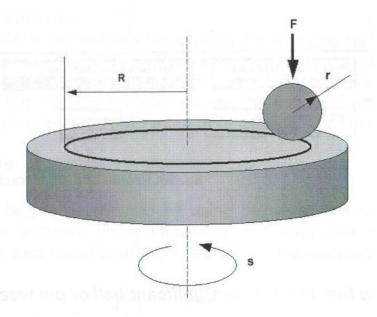
Werkstoffmodifikation Füll- und Verstärkungsstoffe

- Senkung des Reibbeiwertes
 - MoS₂
 - Grafit
 - PE UHMW
 - PTFE Pulver
- Erhöhung des Abrasionswiderstandes
 - Glas-, Kohlenstofffasern
 - Siloxane
 - Mineralische Füllstoffe
- Erhöhung der Chemikalienbeständigkeit
 - Reaktive Schlagzähmodifier
 - PTFE Pulver
 - PE UHMW

Werkstoffmodifikation Compounding 1. Serie

Grundpolymer	Modifikation		
PA 6.6	-		
PA 6.6	10% PE UHMW		
PA 6.6	10% PE UHMW 10% TiO ₂		
PA 6.6	10% PE UHMW 1% Siloxan		
PA 6.6	10% PE UHMW 2% Siloxan		

Werkstoffmodifikation 1. Serie Ermittlung der Reibzahl μ

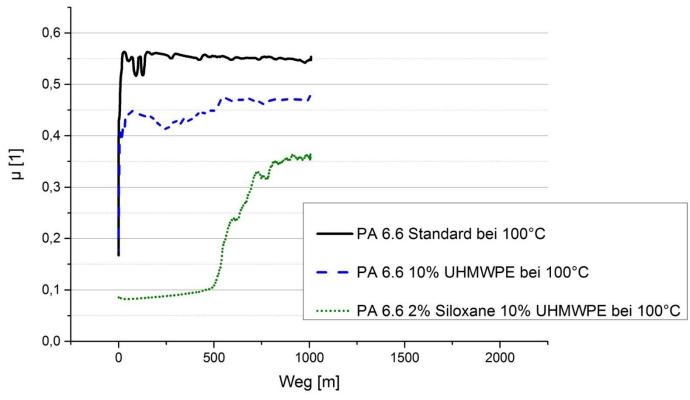

Probenvorbehandlung:

Nassschleifen

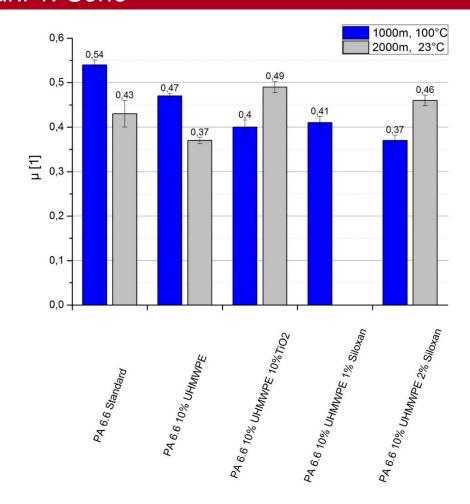
Trocknen im Umlufttrockenschrank

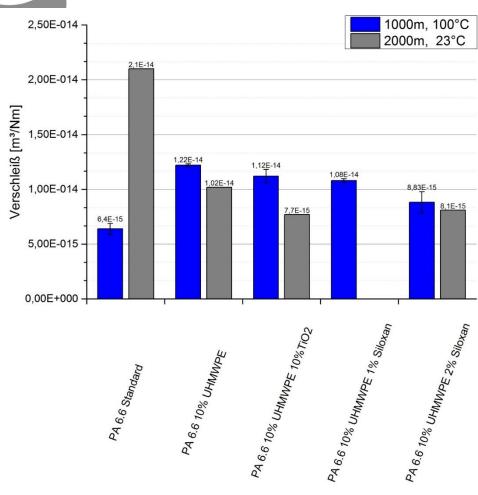
Prüfparameter

Kraft	F	10 N
Umfangsgeschwindigkeit		15 cm/s
Weg		1000 m
Bahnradius	R	5 mm
Kugelradius	r	3 mm
Temperatur	Т	100°C

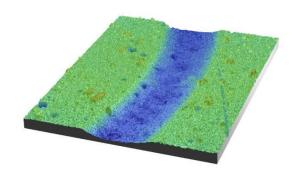


Quelle: CSM Instruments SA (2008). HTHT 70010 Hardware manual


Tribologie Verlauf der Reibzahl vs. Weg 1. Serie



Tribologie Reibzahl 1. Serie



Tribologie Verschleiß 1. Serie

Quantitative Verschleißbestimmung durch Auswertung des Volumens der Tribospur

Werkstoffmodifikation 1. Serie Resümee und Optimierungsbedarf

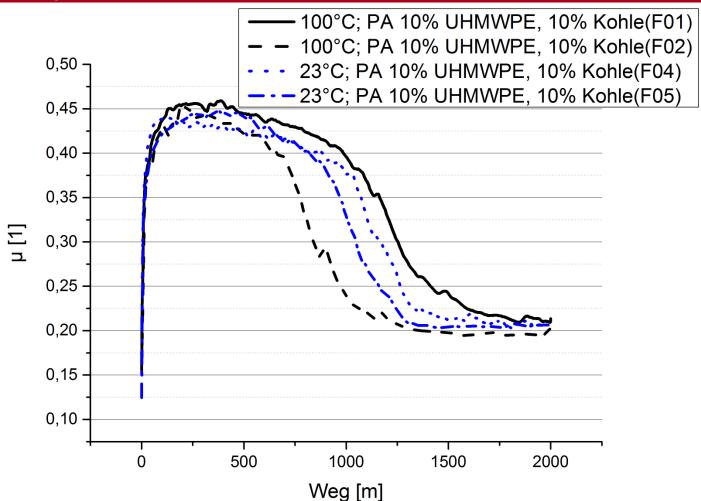
Resümee

- Senkung des Reibbeiwertes
 - PE UHMW
- Erhöhung des Abrasionswiderstandes

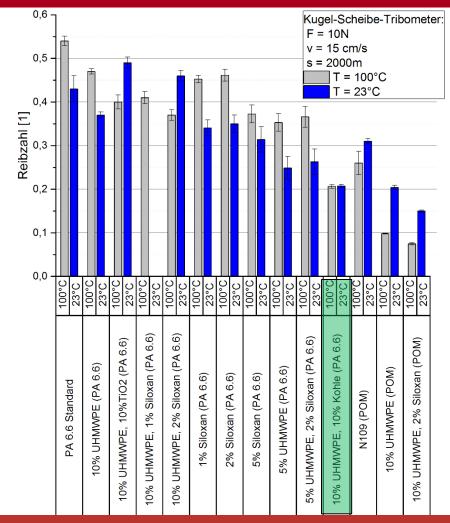
Siloxane
 Verhalten weist auf Unverträglichkeit hin,

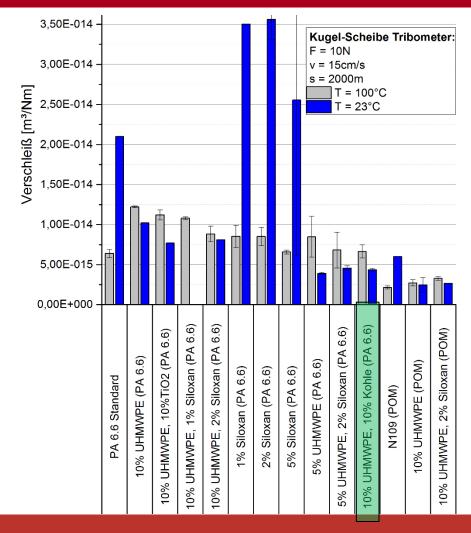
Migration an die Oberfläche

TiO2 kein signifikanter Einfluß


Optimierungsbedarf

- Auffinden eines Minerals zur Erhöhung des Abrasionswiderstandes
- Temperaturkonstanz sowohl Abrieb als auch Verschleiß


Werkstoffoptimierung Kugel-/Scheibe Versuch bei T=23°C und T=100 °C


Werkstoffoptimierung Reibzahl bei T=23°C und T=100 °C

Werkstoffoptimierung Verschleiß bei T=23°C und T=100 °C

Anwendungsbeispiel Stellspindel für Mikrotome

Anforderungen

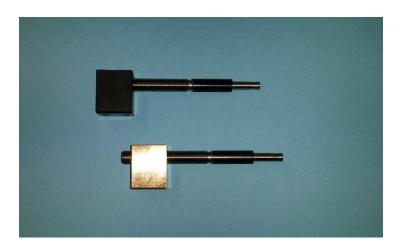
- Minimales Spiel zwischen Mutter und Spindel
- Minimaler Slip-Stick-Effekt

Problem

Wärmeausdehnung verlangt größeres Spiel

Lösung

Spielausgleich mittels Schleppmutter



Anwendungsbeispiel Linearführungen

Anforderungen

- Minimales Umkehrspiel
- Langlebigkeit/Wartungsfreiheit
- Problemlose Herstellbarkeit

Vorteile

- Preisvorteil
- Leichtere Herstellbarkeit
- Keine Schmierung
- Zuverlässigkeit

Ausblick Prototyp Aktuator für RAM Air Turbine (Airbus)

Vorteile

- Verzicht auf Schmierung
- Erhebliche Materialkosteneinsparung
- Gewichtsreduktion
- Leichtere Herstellbarkeit
- Zuverlässigkeit

Kontakt

Advanced Polymer Compounds

Kurzheim 22 8793 Trofaiach ÖSTERREICH

http://www.a-p-c.at

Tel.: +43 (0) 3847 30 29 1

Fax: +43 (0) 3842 29 30 1

