

Leistungsfähigkeit neuer TiAl6V4-CFK-Hybridverbindungen für die Verkehrstechnik

M. Haack, D. Hülsbusch, F. Walther

Fachgebiet Werkstoffprüftechnik (WPT) Technische Universität Dortmund

Grundlagen und Probenfertigung

- Quasistatische Untersuchungen
- Zyklische Untersuchungen
- Fazit

wpl

Mechanisches Fügen

Quelle: Kroll et al., 18th Int. Conf. on Composite Materials

- Punktuelle Krafteinleitung am Hilfsfügeelement
- Störung/Unterbrechung des Faserverlaufs
- Hilfsfügeelemente bedingen Gewichtszunahme

Adhäsives Fügen

Quelle: Klein et al., Euro Hybrid 2014

- Flächige Krafteinleitung über Matrix
- Spröd-hartes Verhalten (Duroplast)
- Chemische und physikalische Alterung

Bedarf an werkstoffgerechten Fügeverfahren

Probenaufbau und -geometrie

Probengeometrie

- Probenform in Anlehnung an DIN EN ISO 1465:2009-07
- Wirklinie der axialen Krafteinleitung in Fügeebene

Quelle: Laser Zentrum Nord (LZN) Matthias Haack | 26.02.2016 Quelle: ACP Composites

VARTM-Verfahren

Vacuum Assisted Resin Transfer Moulding (VARTM)

Weitestgehend schädigungsfreie Durchdringung des Gewebes

Matthias Haack | 26.02.2016

Messaufbau

wpt

Messaufbau für die Zugversuche

Shimadzu AG-X Plus

- Wegaufnehmer: Optischer Inkrementalgeber (± 0,1 %)
- Kraftaufnehmer: Kraftmessdose ± 100 kN (Klasse 1)

AF T

Ergebnisse der Zugversuche 1

Vergleich der Hybridproben

Festigkeitssteigerung durch Verstärkungselemente: 0,5 mm Pins: T_{xz} + 108 %
2,0 mm Pins: T_{xz} + 503 %

Fraktographie

Makroskopisches Schadensbild

Vollständig **adhäsiv** auf Seite des Titans Adhäsiv am Interface Kohäsiv durch partielles Versagen der Pins

Vollständig **kohäsiv**: Flankenzugbruch an erster Pinreihe (CFK)

Schädigungsmechanismen 1

Analyse des Schadensverlaufs

Schädigungsmechanismen 1

Analyse des Schadensverlaufs

Ergebnisse der Zugversuche 2

wpl

Evaluierung der Festigkeitsminderung

Festigkeitsminderung durch 2,0 mm hohe Verstärkungselemente: σ_b - 24 %

Potential zur Schnittstellenoptimierung

Messaufbau und Versuchsführung

Mehrstufenversuche

Quelle: www.shimadzu.com

Messaufbau und Versuchsführung

wp

Ergebnisse der Ermüdungsversuche

	_	0,5 mm	2,0 mm
F _{max,D}	2,75 kN	3,50 kN	5,50 kN
F _{max,B}	3,25 kN	5,25 kN	11,25 kN
N _B	59251	96097	217144

	_	0,5 mm	2,0 mm
F _{max,D}	-	+ 27 %	+ 100 %
F _{max,B}	-	+ 62 %	+ 246 %
No		+ 62 %	+ 266 %
IN _B	_	+ 02 %	+ 200 %

Gegenüberstellung

Vergleich der unterschiedlichen Prüfkörperkonfigurationen

Stark verbesserte Schädigungsresistenz

Fraktographie

Makroskopisches Schadensbild

2,0 mm Pins

Vollständig adhäsiv auf Seite des Titans Adhäsiv am Interface Kohäsiv durch partielles Versagen der Pins

Adhäsiv am Interface Kohäsiv durch Versagen der Pins

Fazit

- 1. Kombinierter Messaufbau ermöglicht Abbildung des Schadensverlaufs
- 2. Geometrisch bedingte Schälbeanspruchung führt zu frühem Versagen der Klebung
- 3. Variation der Pinhöhe beeinflusst Schädigungsverlauf
- 4. Stark verbesserte Festigkeitswerte durch Hinzufügen der 2 mm hohen Verstärkungselemente

4. Fazit

Zusammenfassung

Publikationen AM

- 10) Wycisk, E.; Siddique, S.; Herzog, D.; Walther, F.; Emmelmann, C.: Fatigue performance of laser additive manufactured Ti-6AI-4V in very high cycle fatigue regime up to 10⁹ cycles. Frontiers in Materials, 2:72 (**2015**) 1-8.
- 09) Siddique, S.; Wycisk, E.; Tenkamp, J.; Hoops, K.; Behrens, G.; Emmelmann, C.; Walther, F.: Mechanical performance of hybrid aluminum structures manufactured by combination of laser additive manufacturing and conventional machining processes. Werkstoffprüfung 2015 Fortschritte in der Werkstoffprüfung für Forschung und Praxis, Stahleisen (**2015**) 157-162.
- 08) Siddique, S.; Walther, F.: Selective laser melting: Mechanical performance of light-weight alloys. Additive Manufacturing (AM): Emerging Technologies, Applications and Economic Implications. Nova Science Publishers (**2015**) 75-109.
- 07) Hülsbusch, D.; Haack, M.; Solbach, A.; Emmelmann, C.; Walther, F.: Influence of pin size on tensile and fatigue behavior of Ti-CFRP hybrid structures produced by Laser Additive Manufacturing. ICCM20, Proc. of the 20th International Conference on Composite Materials (**2015**) 1-12.
- 06) Siddique, S.; Imran, M.; Rauer, M.; Kaloudis, M.; Wycisk, E.; Emmelmann, C.; Walther, F.: Computed tomography for characterization of fatigue performance of selective laser melted parts. Materials & Design, Vol. 83 (**2015**) 661-669.
- 05) Siddique, S.; Imran, M.; Wycisk, E.; Emmelmann, C.; Walther, F.: Influence of process-induced microstructure and imperfections on mechanical properties of AlSi12 processed by selective laser melting. Journal of Materials Processing Technology, Vol. 221 (2015) 205-213.
- 04) Solbach, A.; Huelsbusch, D.; Haack, M.; Emmelmann, C.; Walther, F.: Investigation of fiber reinforced plastic penetration produced by laser additive manufacturing with pin size variation. AST2015, Proc. of 5th Internatiol Workshop on Aircraft System Technologies (2015) 315-323.
- 03) Siddique, S.; Wycisk, E.; Frieling, G.; Emmelmann, C.; Walther, F.: Microstructural and mechanical properties of selective laser melted AI 4047. Applied Mechanics and Materials, Vols. 752-753 (**2015**) 485-490.
- 02) Wycisk, E; Solbach, A; Siddique, S; Herzog, D; Walther, F; Emmelmann, C.: Effects of defects in laser additive manufactured Ti-6AI-4V on fatigue properties. Physics Procedia, Vol. 56 (**2014**) 371-378.
- 01) Wycisk, E.; Emmelmann, C.; Siddique, S.; Walther, F.: High cycle fatigue (HCF) performance of Ti-6AI-4V alloy processed by selective laser melting. Advanced Materials Research, Vols. 816-817 (**2013**) 134-139.

Fragen?

Dipl.-Ing.Matthias HaackTel.:(0231) 755 8040E-Mail:matthias.haack@tu-dortmund.de

Technische Universität Dortmund Fachgebiet Werkstoffprüftechnik (WPT) Prof. Dr.-Ing. Frank Walther Baroper Straße 303 D-44227 Dortmund

Tel.:	+49 (0)231 755 8028
Fax:	+49 (0)231 755 8029
E-Mail:	frank.walther@tu-dortmund.de
Web:	www.wpt-info.de