Wear Simulation of Rings & Packings

How to model wear

Andreas Kaufmann 4A-Technologie Tage 26.2.2016

Introduction - HOERBIGER

- worldwide leading company
- 130 Production & Service Locations
- 7000 Employees
- ~ 1.000 Million EUR revenue
- Founder: Hanns Hörbiger
- Compressor Solutions
 - Compressor Valves
 - Rings & Packings
 - Mechatronics

Reciprocating Compressor

Rings & Packings

Different Types of Rings & Packings

Radial Tangent Ring Pair

BCD

Dynamic Seals

- Rings and Packings are dynamic seals. Requirement is to seal a gap between moving and stationary components in crank gear machines:
 - piston compressors
 - piston pumps
 - combustion engines
 - steam engines
- Packings

seal gaps between packing housing and piston rod

Boundary Conditions

SIMULATION OF WEAR

Model Restrictions

time scales:a) compressor running with> 5 Hzwearb) service time of the rings1 yearcreep

the smaller time scale is not considered directly:

- ➔ wear is averaged over time as wear/time
- ➔ no consideration of the reciprocating motion (slip-stick)
- → for the 1st approach all relative motion is considered frictionless
 → the coefficient of friction can be used as a fit parameter
 → reduction of calculation time

DEVELOPMENT OF A LINEAR ELASTIC WEAR MODEL FOR AN AXISYMMETRIC SOLID RING

Wear in Abaqus via UMeshMotion

wear = proportional to contact pressure and time increment

Neighbor node 'trick' -> higher total wear

Abaqus Implementation 2D Model

result of wear calculation: wear distribution after a few wear cycles

Scheme of Coupled Analysis

call of a single Python file, which then calls

1.	initialization: input file main (wear) model	Abaqus
2.	getting parameters for loops	Python
3.	finding radial neighbor nodes of the contact nodes	Python
		<u>ן</u>
4.	generation of input file for sub model ខ្ល	Python
5.	calculation of sub model (gas press. distribution) $\frac{1}{2}$	Abaqus
6.	generation of input file for main model	Python
7.	calculation of main model (wear)	Abaqus, Fortran
8.	last calculation unload main model	Abaqus
9.	post processing	Python, Matlab

2D – Results

BCD RINGS

REAL GEOMETRY SIMULATIONS

3D BCD Ring Geometries

rod size: 50 mm

2D pressure distribution model: area of ring-rod contact

Evolution of Wear

rod Ø 50 mm, linear elastic

Calculation cycle:

Status quo:

Worn BCD Ring

Summary & Outlook

implementation of wear:

Python +

Abaqus +

Fortran user defined Subroutines

(stress free movement of nodes makes wear possible)

 \rightarrow wear can be calculated \rightarrow wear pattern & wear over time

successful implementation of wear in 2D and 3D using a linear elastic material model

Outlook:

implementation of a complex material model

