Creep of polyoxymethylene: Experiments and material modeling

P. Zerbe^{1,2}, <u>B. Schneider¹</u>, E. Moosbrugger¹, M. Kaliske²

¹Robert Bosch GmbH, Corporate Sector Research and Advance Engineering, Plastics Engineering, Renningen ²Technische Universität Dresden, Institute for Structural Analysis

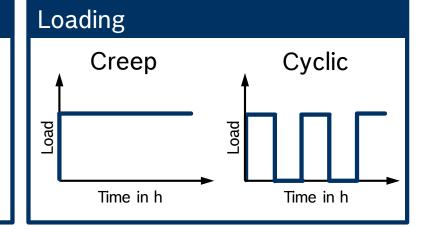
CR/APP2-Schneider | 2016-02-25 | © Robert Bosch GmbH 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Creep of POM: Experiments & material modeling

Introduction

Bosch: Business Sectors

- Mobility Solutions
- → Consumer Goods
- → Industrial Technology
- Energy and Building Technology


Products

Material

Polyoxymethylene

- → Thermoplastic
- → Semicrystalline
- → Unreinforced

POM: Polyoxymethylene; www.bosch-presse.de, 2016-01-12.

CR/APP2-Schneider | 2016-02-25 | © Robert Bosch GmbH 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Main contents of this lecture are not contained here.

It is referred to the following paper to be submitted:

Zerbe, P., Schneider, B., Moosbrugger, E., Kaliske, M.: A Viscoelastic-Viscoplastic-Damage Model for Creep and Recovery of a Semicrystalline Thermoplastic

CR/APP2-Schneider | 2016-02-25 | © Robert Bosch GmbH 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

3