KONTINUUMSMECHANISCHE SIMULATION VON KLEBEFÜGUNGEN ZUR VIRTUELLEN ERMITTLUNG VON PARAMETERN FÜR KOHÄSIVZONENMODELLE

Dr.-Ing. Monika Gall, Dipl.-Ing. Hanna Paul, PD Dr.-Ing. Jörg Hohe

4a Technologietag 2014 28.02.2014, Schladming

Fraunhofer-Institut für Werkstoffmechanik IWM

- Institutsleitung
 Prof. Dr. Peter Gumbsch
 Prof. Dr. Ralf Wehrspohn
 Dr. Rainer Kübler (FR)
 Dr. Christoph Eberl (FR)
 Prof. Dr. Matthias Petzold (HA)
- Mitarbeiter: 541
- 279 Freiburg, 262 Halle incl. CSP
- 32,6 Mio.€ Budget
 - 17,2 Mio.€ Freiburg
 - I5,4 Mio.€ Halle
- 39% industrielle Auftragsforschung
- Qualitätsmanagement zertifiziert nach ISO 9001

Fraunhofer IWM Freiburg

Fraunhofer IWM Halle

Verbundwerkstoffe und Werkstoffverbunde Werkstoffcharakterisierung und Bewertung in Experiment und Simulation

- Experimente
 - Standardcharakterisierung
 - Bruchmechanik
 - Kriechen
 - Lebensdauer
 - Anisotropie, Heterogenität, Interaktionseffekte, …
 - Einsatzbedingungen
 - Schädigungsmechanismen
- Numerische Simulation
 - Trag- u. Versagensverhalten auf Material- und Bauteilebene

Biaxiale Belastung von Rohrproben, Axialer Zug + Innendruck

Interlaminare Bruchzähigkeit

Kriechen unter Einfluss von Belastung, Temperatur und Feuchte

Interlaminare

Schubfestigkeit

Beschreibung des Kriechverhaltens von Polymeren mit / ohne Faserverstärkung

- Kriechversuche
 - Konstante statische Belastung, Zug- oder Biegung, Versuchsdauer typ. 3-100 Tage
 - Normklima oder bis 190°C, ggfs. mit 10% - 95% r. F.
- Modellierung
 - Anpassen der Materialparameter für Kriechmodelle, ggfs. mit Parameteroptimierungs-Routine
 - FE-Simulation mit UMAT

Anpassung des Burgers-Modells (UMAT) an Kriechversuche bei verschiedenen Spannungsniveaus

Mikrostrukturmodellierung von LFT

- Langfaserverstärkte Thermoplaste: vom CT-Scan zur FE-Analyse
 - statistische Kenngrößen:
 Orientierungsverteilung,
 Längenverteilung,
 Volumengehalt
 - Generierung und FE-Analyse eines Ersatzmodells (Repräsentatives Volumenelement, RVE)

Mikrostrukturmodellierung von langglasfaserverstärkten Thermoplasten (LFT): Vom CT-Scan zur FE-Analyse

Hybride Werkstoffverbunde

- Kunststoff-Metall-Verbunde, lokal UD-verstärkte FVK, ...
- Experimentelle
 Charakterisierung des
 Verformungs- und
 Versagensverhaltens,
 Eigenspannungsanalyse
- Mikroskopische Analyse von Bruchflächen
- Modellierung
- Bewertung des Verformungs- und Versagensverhaltens von Hybridverbunden

Vergleich der optisch mittels ARAMIS® (links) und numerisch (rechts) an der Oberfläche Dehnungsfelder (ε_{max}=0,4%).

Rasterelektronenmikroskopische Aufnahme eines bei 80°C geprüften PA6.6 GF40

ermittelter Kraft-Weg-Kurve mit einem Simulationsergebnis

Probabilistische Homogenisierung

Streuung effektiver Materialeigenschaften bei Festkörperschäumen

- experimentell-numerischer Lösungsansatz
- lokal aufgelöste Dehnungsmessung \geq
- numerischer Simulationsansatz >

stochastische Auswertung der effektiven Steifigkeitskoeffizienten

Auswertung

Kontinuumsmechanische Simulation von Klebefügungen zur virtuellen Ermittlung von Parametern für Kohäsivzonenmodelle

- Hintergrund: Warum ist ein Konzept zur virtuellen Ermittlung der Kohäsivzonenparameter sinnvoll?
- Methodik
- Anwendungsbeispiel: geklebter Double-Cantilever-Beam
- Ausblick

Gefördert im Rahmen des Projekts RTM CAE/CAx im Technologie-Cluster Composites Baden-Württemberg TC²

Komplexe Einflüsse auf Trag- und Versagensverhalten von Klebefügungen Hintergrund – 1

- Anspruch: Validierte, effiziente Simulationsmethoden zur sicheren Auslegung von Klebefügungen im Faserverbund-Leichtbau
- Problematik: komplexe Wechselwirkungen von Struktur und Materialeigenschaften
 - strukturelle Parameter wie Klebschichtdicke und Substratgeometrie
 - Materialparameter von Klebstoff und Substrat
- jeweilige Kombination der Parameter beeinflusst Versagenslast und auftretende Versagensmechanismen

- Versagen im angrenzenden Laminat
- kohäsives Versagen der
 Klebschicht

adhäsives Versagen im Interface zwischen Laminat und Klebschicht bzw. Bindefehler

Komplexe Einflüsse auf Trag- und Versagensverhalten von Klebefügungen Hintergrund – 2

- getrennte Bewertung der Einflüsse nicht möglich
 - experimentelle Versuchsmatrix verschiedener struktureller und materieller Paarungen nötig
- Ziel: Reduktion des Aufwands durch die virtuelle Parameter-Ermittlung
 - virtuelle Variation verschiedener Paarungen struktureller und materieller Effekte
 - Analyse und Bewertung des Trag- und Versagensverhaltens
 - Ermittlung der Kohäsivzonenparameter zur Nutzung in der Bauteilsimulation

Kontinuumsmechanische Simulation von Klebefügungen zur virtuellen Ermittlung von Kohäsivzonenparametern Methodik

- Virtuelle Materialpr
 üfung: Simulation des fortschreitenden Versagens der Laminatf
 ügung in einem detaillierten, hochaufgel
 östen Modell
 - Schädigungsverhalten der Klebschicht durch kontinuumsmechanisches Materialmodell beschrieben
 - Steifigkeits- und Schädigungsparameter aus Versuchen an Klebstoff-Substanzproben
- Homogenisierungsansatz:

Abbildung des Trag- und Versagensverhaltens im detaillierten Modell auf effizientes Kohäsivzonenmodell

Kontinuumsmechanische Simulation von Klebefügungen zur virtuellen Ermittlung von Kohäsivzonenparametern Anwendungsbeispiel: DCB-Versuch mit Epoxy-Klebung

Kontinuumsmechanische Simulation der Klebefügungen Materialverhalten des Epoxidharz-Klebstoffs

Zugversuche*

Schubversuche*

*Versuchsdaten zur Verfügung gestellt durch Daimler AG

Kontinuumsmechanische Simulation der Klebefügungen Plastisches Verhalten und schädigungsmechanische Formulierung des Klebstoffversagens

- Berücksichtigung von volumetrischem Fließen im hydrostatischen Spannungszustand
- dehnungsbasierte
 Versagensgrenzkurve
- Schädigungsformulierung: Steifigkeitsdegradation bei Überschreiten der Grenzkurve

Kontinuumsmechanische Simulation der Klebefügungen Materialverhalten des Epoxidharz-Klebstoffs

Anpassung Steifigkeits- und Schädigungsparameter für kontinuumsmechanisches Klebstoff-Materialmodell

Kontinuumsmechanische Simulation der Klebefügungen Simulation der Versuche zur Materialdatenanpassung

Simulation der Zugversuche, technische Spannungs-Dehnungs-Kurven

 $arepsilon_{ ext{tech}}$ [-]

Kontinuumsmechanische Simulation der Klebefügungen Simulation der Versuche zur Materialdatenanpassung

- Simulation der Schubversuche, technische Spannungs-Dehnungs-Kurven
 - Parameter Fit an Versuchsergebnisse

 γ_{tech} [-]

Kontinuumsmechanische Simulation der Klebefügungen Riss in Klebschicht Detail-Modell

- 3D Modell
- in Rissnähe sehr fein vernetzt
- Mode I Belastung → Risswachstum

CFK-Substrat quasi-isotrop, $[0^{\circ}/90^{\circ}/+45^{\circ}/-45^{\circ}]s$, $h_{qes} = 2.7$ mm

Epoxy-Klebstoff, h = 0.4 mm

Anrisslänge im Versuch: $a_0 = 47$ mm, Risswachstum Δ

Länge Detailmodell $I_{\rm D}$ = 20 mm, Anriss im Detail $a_{\rm D}$ = 5 mm

Kontinuumsmechanische Simulation der Klebefügungen Riss in Klebschicht Detail-Modell

- 3D Modell
- in Rissnähe sehr fein vernetzt
- Mode I Belastung → Risswachstum

CFK-Substrat quasi-isotrop, $[0^{\circ}/90^{\circ}/+45^{\circ}/-45^{\circ}]s$, $h_{ges} = 2.7$ mm

Epoxy-Klebstoff, h = 0.4 mm

Anrisslänge im Versuch: $a_0 = 47$ mm, Risswachstum Δ

Länge Detailmodell $I_D = 20$ mm, Anriss im Detail $a_D = 5$ mm, Länge Hebelarm = 42 mm

Kontinuumsmechanische Simulation der Klebefügungen Homogenisierungsansatz

- Auswertung Spannungs-Separationsverhalten im Detailmodell
- Übertragung auf Kohäsivzonenmodell

Kontinuumsmechanische Simulation der Klebefügungen Homogenisierungsansatz

- Ansatz 1: direkte Übertragung Spannungs-Separationsverhalten
 - Knotenverschiebungen in Grenzfläche
 - Spannungen senkrecht zum Riss in Klebstoff-Elementen an Grenzfläche
 - im Bereich stationären Rissfortschritts

Kontinuumsmechanische Simulation der Klebefügungen Homogenisierungsansatz

- Anpassen Spannungs-Separations-Verhalten f
 ür Kohäsiv-Elemente
 - Steigung elastischer Bereich
 - Steifigkeitsdegradation nach Schädigungsbeginn
 - Versagensdehnung
 - dissipierte Energie

- Finite-Elemente Modell
 - CFK-Substrat:
 Schalenelemente
 - Klebstoff:
 8-Knoten Kohäsiv-Elemente

- Abgleich mit Experiment
 - Anfangsrisslänge

Breite: 24.78 mm, Modell: Symmetrie

Gesamtdicke Probe: gemessen: 5.76 mm Modell: 2 x 2.7 mm (CFK-Substrat) + 0.4 mm (Klebstoff) = 5.8 mm

Anfangsrisslänge a₀ (nach Anriss): 47 mm

Kontinuumsmechanische Simulation der Klebefügungen Zusammenfassung und Ausblick

Derzeitiger Stand

- grundsätzliche Anwendbarkeit gegeben
- genaue Anpassung in Arbeit

Es folgen

- Übertragung auf Mode II und Mixed-Mode Bruchmechanikexperimente an geklebten Proben
- Analyse lokaler Effekte auf die Rissausbreitung, Einfluss lokaler Spannungskonzentrationen an den Grenzflächen
- Parameterstudien zu Detailgestaltung der Klebefügung
 - verschiedenen Klebschichtdicken
 - Abschrägung der Substrate und/oder Klebschicht

Fragen...?

Kontakt Dr.-Ing. Monika Gall Verbundwerkstoffe Fraunhofer-Institut für Werkstoffmechanik IWM Wöhlerstr. 11 | 79108 Freiburg | Deutschland Telefon +49 761 5142-218 monika.gall@iwm.fraunhofer.de www.iwm.fraunhofer.de

