Hochdynamische Materialcharakterisierung für Zug-, Druck- und Schubbelastung unter Verwendung der Split-Hopkinson Bar Methode

Dr. Hannes Körber

Content

- Introduction of Split-Hopkinson Pressure Bar (SHPB) Test Method
 - Strain Rate Regimes and Associated Experimental Conditions
 - Classic SHPB Setup
 - SHPB Analysis
 - Pulse Shaping
 - Digital Image Correlation
 - Different Hopkinson-Bar Types
- Test Examples with Compression-Bar Setup
- Test Examples with Tension-Bar Setup

Introduction of Split-Hopkinson Bar Test Method

Strain Rate Regimes and Associated Experimental Conditions

10 ⁶ 1	04	10 ²	10 ⁰	10 - 2	10-4	10 ⁻⁶	10 ⁸	Char	acteristic time (s)
0 10 ⁻⁸ 1 Creep	0-6	10 ⁻⁴ I I Quasi-s	10 ⁻² I	10 ⁰ I I Intermediate strain rate	10 ² Bar impact	10 ⁴	10 ⁶ T T High-velocit plate impac	T ► Y st	Strain rate (s ⁻¹)
Constant load or stress machine		Hydraulic or screw machine		Pneumatic or mechanical machines	 Mechanical or explosive impact		Light gas gun or explosively driven plate impact		Usual method of loading
Strain versus time or creep rate recorded		Constant strain rate test		Mechanical resonance in specimen and machine	Elastic- plastic wave propagation		Shock wave propagation		Dynamic
✓ Inertia forces neglected — > < Inertia forces important — > < Adiabatic → Adiabatic → Plane strain →									in testing
Increasing stress levels									

[ASM Handbook Vol 8]

SHPB Analysis

Bar strain waves are measured at the bar strain gauges at different times and away from the specimen but are generated at the same time and act simultaneously on the specimen

ramp-shaped / linear specimen

Lehrstuhl für Carbon Composites

Incident wave shape matches specimen stress-strain response (non-linear vs. linear)

- near constant strain rate •
- improved dynamic ٠ force equilibrium

trapezoidal / non-linear specimen

Strain Measurement via Digital Image Correlation (DIC)

• High speed photography reveals deformation and failure mechanisms

Compression-, Tension- and Torsion Setups

Test Examples with Compression-Bar Setup

bar end-surface

Lehrstuhl für Carbon Composites

Hopkinson-Bar Setup for Dynamic Tests

Quasi-Static Reference Test Setup

incident-bar

Specimen strain obtained with digital image correlation (DIC) using GOM ARAMIS system

Strain rates:

Quasi-static (QS): 0.0004 s^{-1} Intermediate rate (IR): $\approx 200 \text{ s}^{-1}$ High rate (HR): $\approx 1000 \text{ s}^{-1}$

Axial strain fields for intermediate and high rate unidirectional fabric carbon-epoxy 90° compression test

Axial strain fields for intermediate and high rate 8-harness-satin S2 glass-epoxy 90° compression test

Strain Rate Effect on the $\sigma_{22} - \tau_{12}$ Failure Envelope

Strength component in material COS obtained from strength in loading COS via coordinate transformation:

$$\sigma_{22} = \sigma_{xx} \sin^2 \beta$$
 , $\tau_{12} = -\sigma_{xx} \sin \beta \cos \beta$, $\beta = \theta_0 + d\theta$

Strain Rate Trend Approximation via Cowper-Symonds Type Scaling Function

Test Examples with Tension-Bar Setup

Specimens are bonded into slotted end caps

Same specimen geometry used for quasi-static reference tests and dynamic tests performed on the Hopkinson-bar to ensure comparability of results

Shown specimen prepared for \varnothing 16 mm titanium Hopkinson-bar setup

Test Setup

quasi-static reference test setup for electro-mechanical test machine

dynamic test setup for \varnothing 16 mm titanium Hopkinson-bar

Technische Universität München

Dynamic Plain-Weave E-Glass-Epoxy Tensile Test

Video sequence captured with Photron SA5 high speed camera

Axial strain-field determined with ARAMIS DIC system

Dynamic Stress-Strain Curve and Strain Rate

Comparison of Quasi-Static and Dynamic Material Behaviour

Conclusion

- The split-Hopkinson bar method is ideally suited for dynamic material characterisation of composites in the strain rate range of $10^2 10^3 s^{-1}$
- Pulse shaping is required to obtain constant strain rates and an early dynamic equilibrium state
 - ramp shaped incident wave for linear stress-strain behaviour
 - Trapezoidal shaped incident wave for non-linear stress-strain behaviour
- Optical strain measurement techniques, such as digital image correlation, are ideally suited to obtain all strain components of orthotropic materials and are further useful to evaluate the uniformity of the specimen deformation
- High speed photography reveals specimen deformation and failure mechanisms

Vielen Dank für Ihre Aufmerksamkeit