

Competition of Polymeric Materials for Light Weight Design and Manufacturing – or Complementary Options

Zoltán Major

Institute of Polymer Product Engineering

27. February 2013, 4a Tagung

iPPE

- Prologue
- Introduction and Scope
- Case Studies
 - Polypropylene for automotive applications, PP-GF
 - Rubber modified Polyamide, PAR; impact
 - PEEK for combined bulk tribological appplications near to the engine
 - Prototyping
- Discussion
- Conclusions and Future Work
- Acknowledgement
- Epilogue

Prologue

Competition - The Home of the Team

JKU Science Park

Institute of Polymer

Product Engineering

and Building Physics

Institute of Polymer Injection Moulding and Process Automation

SP2 &3 Polymer Technology Center

SP3 Informatics Center

SP2 Wood Research Center

Institute of Polymeric Materials and Testing

iPI

SP1 Mechatronics Center

- Metals vs. Polymers
 - Comparison of plasticity both from practical and from material modeling point of view
- Thermoplastic (uncrosslinked) vs thermoset (cross-linked) polymers for composites
 - Development continuous fiber reinforced thermoplastic matrix composites (Engel, ipim)
 - Discontinuous, injection molded composites
- Thermoplastic vs. crosslinked elastomers and composites
 - For Hydrogen applications
 - For controlled damping applications

Introduction

Hydrogenius, Kyushu University, Fukuoka, Japan

Betankung mit IH₂ (12-20 min)

Discontinuous Short Fiber Reinforced Polymer Composites

Functional fillers

Not only competition of matrix materials but fillers/interfaces

iPPE

PP's vs PAs

Short glass fiber reinforced PP-GF for interior and exterior automotive applications – how far is PA-GF ?

 E_{PP} =1200 - 2000 MPa < E_{PA} = 2000 - 3400 MPa

Stiffness for a specific filler depends only on the **matrix properties**

Rubber Modified PP and PA grades

Toughness for a specific filler depends on the matrix and particle properties on the interface quality

Case Study 1 – PP-GF

Deformation and Fracture Behavior of (Hard) Particle Filled Thermoplastics (Polypropylene (PP))

Short glass fiber reinforced, PP-GF

Laboratory Specimens

Short glass fiber reinforced, PP-GF – Experiments & Simulation

Strain Measurement

Fiber Orientation Dependence

Short glass fiber reinforced, PP-GF - Experiments

Influence of the Interface Quality

Influence of the fiber (real) length

13

iPPE

Case Study 1 – PP-GF

Component Simulation

PA, Molekül-Design

Thermo-mechanische Daten von PAs

J. Stebami; Polyamid Inovationen,

Deformation and Fracture Behavior of (Soft) Particle Filled Thermoplastics (Polyamide PA)

Classics

Temperature and loading rate dependence

Deformation and Yield Models

Novel

Cohesive Zone Models

Stress state dependence (constraint)

Rubber Modified PA grades

PAR1; PA6+Ethylen-Okten unmodified,

PAR2; PA6+ Ethylen-Okten MAH grafted,

Temperature dependence,

Ductile-brittle transition, modeling approach

PAR3; PA6+ Ethylen-Okten mixture, unmodified, grafted,

PAR4; PA6+ Ethylen-Okten-Butylen, MAH grafted and

PAR5; PA6+ Ethylen-Okten-Butylen, MAH-grafted with approximately double MAH content,

Introduction of a novel servohydraulic multiaxial high rate test system

Introduction of a novel servohydraulic multiaxial high rate test system

High Speed Image Acquisition

and

Temperature Chamber

in selection

High Speed Data Acquisition (Gen2i, HBM) 4 Ch SG, 1 Ms/s 4 Ch, U, 25 Ms/s

Impact Test Methodology

Test Specimen Level

- ISO MPP and Cylindrical Specimens
- Tensile (uniax and planar), compression and shear set-up
- High Speed camera (500 kS/s), DIC, FFSA (Aramis)
- -60 ° C < Test Temperature < 180 ° C
- Biaxial in-plane (out of plane is available for thermoplastics !)
- Specimens with varying constraints GISSMO methodology

Component Level

- Full Scale testing of Chassis Elements of Passenger Cars and Trucks up to 1.2 x 1.8 x 0.8m, at RT and
- 0.8 x 0.8 x 0.8 m in Temperature Chamber
- 32 Ch moderate rate and 8 Ch high rate data acquisition

Service scale loading test of all kind of damping elements for vehicles

- Air springs
- Suspensions
- Shock absorbers

Full scale viscoelastic analysis

Simulation Models - Modeling of soft thermoplastic materials

Bergström-Boyce (BB) Models: Arruda-Boyce (2006), Hybrid (2007), Three Network (2009)

$$T_{C} = \frac{1}{1+q} \left\{ \frac{\mu_{C}}{J \lambda_{chain}} \frac{\Lambda^{-1}(\overline{\lambda^{*}}/\lambda_{A}^{lock})}{\Lambda^{-1}(1/\lambda_{A}^{lock})} dev[B^{*}] + \kappa(J-1) + q \frac{\mu_{C}}{J} \left[I_{1}^{*}B^{*} - \frac{2I_{2}^{*}}{3}I - (B^{*})^{2} \right] \right\}$$

The Cauchy stress acting on network C is given by the eight-chain model with first order I_2 dependence given by above Eq., where q gives the I_2 dependence

Index	Symbol	Umat	Unit*	Description
		Name		
1	μ_A	muA	S	Shear modulus of network A
2	$\hat{ heta}$	thetaHat	Т	Temperature factor
3	λ_L	lambdaL	-	Locking stretch
4	κ	kappa	S	Bulk modulus
5	$\hat{ au}_A$	tauHatA	S	Flow resistance of network A
6	a	a	-	Pressure dependence of flow
7	m_A	mA	-	Stress exponential of network A
8	n	47.000	to shall	nential
9	μ_{Bi}	17 ma	terial	parameters lus of network B
10	μ_{Bf}	muBf	\mathbf{S}	Final shear modulus of network B
11	β	beta	-	Evolution rate of μ_B
12	$\hat{ au}_{B}$	tauHatB	S	Flow resistance of network B
13	m_{B}	mB	-	Stress exponential of network B
14	μ_C	muC	S	Shear modulus of network C
15	q	q	-	Relative contribution of I_2 of network C
16	α	alpha	T^{-1}	Thermal expansion coefficient
17	θ_0	theta0	T	Thermal expansion reference temperature

*where: - = dimensionless, S = stress, T = temperature

Bergström, 2012

PA's vs PEEK

Combination of bulk and tribological loading – plastic gears

- Friction
- Wear

Rapid Prototyping

- **Fused Deposition Modeling (FDM)**
 - ABS
 - PC, PC-ABS
 - PPSU
 - amorphous thermoplastic polyetherimide (PEI)
- **3D** printing
 - Single and multiple Objet materials
 - **Meso-Scale Models**
- **Selected Laser Sintering**
 - PA's
 - PEEK

No pressure in the process

Plastic Gears PA's vs PEEK

Fig. 2. Polymer composite gear.

100 • TW341 gear data, corrected using FEA PEEK 450G, gear data, corrected using FEA 80 TW200B6 gear data, IS0 6336 TW200F6 gear data, IS0 3336 (root) stress [MPa] 60 40 20 0 1 E+06 1 F+05 1 F+07 1 F+08 # cycles [-]

Figure 12—Gear fatigue results at 140°C under oil lubrication for various Stanyl grades and a PEEK material.

PEEK vs PEK/PAEK

27

Bulk vs Tribological Performance

Wear Resistant Compounds

Polymer Matrix

- HT resistance,
- easy processibility

Fiber reinforcements

- Improved, stiffness and creep
 resistance
- Improved strength and wear resistance

Additive fillers

- Internal lubrication, transfer film formation
- Increased heat conductivity
- Smoothening of the surface roughness

Friedrich, 2008

Component level - Experiments

Component level – Simulations 1

0.9693

0.9258

0.8824

0.8389

0.7954

0 7520

0.7085

0 6650

0 6216

0.5781

0.5346

0 4912

0.4477

0.4042

0.3608

JKU

Component level – Simulations 2

Fiber orientation

Failure Simulation

- In addition to the • models of $Fe_{\mu cell}$ und FPGF
- **Defects** are • characterized by CT
- **Crack models**

- **Cohesive elements** are used in the welding line
- The CZ parameters lacksquareare determined experimentally (Major and Miron, 2012)

Prediction of Material Behavior

PEEK homogenization simulation (DigiMat MF)

Temperature dependent matrix and fiber properties, perfect interface, varying AR, fiber content, orientation

RVE Prototyping

Virtual representative element with fiber orientation of 0° (RVE).

Full-field Strain Analysis of the test specimens with 60° fiber orientation

FE simulation of the test specimens with 60° fiber

Reiter and Major, 2011

Selected Laser Sintering

Specimen lev	Value		Test method	PEEK-HP3	PA2200	
·	Tensile strength [MPa]		ISO 527	90	48	
120 - injection molded	Young's modulus [MPa]		ISO 527	4250	1700	
	To support real engin	ooring	[%]	ISO 527	2,8	20
	to support real engin	cering	Pa]	ISO 178	133	58
100 -	applications (automo	applications (automotive, medicine)Pajthe mechanical behavior of theerectionprototyped specimen/component[°Cmust be comparable to the injectionper		ISO 178	4100	1500
W AD	the mechanical behav			ISO 1183	1,315 [~99%]	0,93 [>>90%]
	prototyped specimen			DSC	370 - 385	172 - 180
	must be comparable			DSC (EOS)	163	~ 50
SLS prototyped	molded part		erature A	ISO 75	205	55
ts 40 -		Heat distortion tem	perature B		352	128
^{Pen} ₂₀ σ _y ^{SLS} > 0.85 (0.	σ _y ^{SLS} > 0.85 (0.9) σ _y ^{IM}			UL746B	180* 240*	95
0					260*	
0 20 40 60 80 100	Flammability		UL94	V-0*	HB	
temperature	T, °C					

Improve of the Stiffeness/Strength

Application of special fillers (Pana Tetra®)

Micro-mechanical simulations for predicting the properties (DigiMatFE)

- Price and performance competition of all components of compounds (polymer matrix, stiffening and functional fillers and interface treatments (compatibilization)
- The stiffness prediction is of sufficient quality both for hard particle filled and for soft particle toughened compounds over a wide temperature range
- Various methods at various length scales of the microstructure are investigated to model and predict the failure behavior of sfr polymer composites. In all cases adequate material parameters are needed. The simulation complexity is different and the application depends on the availability of models and data and practical considerations (time)
- Increasing number of phases may support additional functionality, but cause unexpected complications (failure behavior)
- Combined macro and microstructure based optimization of the components

Prologue

INVITATION

13 of May, Opening of the Polymer Technology Center at the JKU in Linz

in Science Park 2 and 3

The results of these study were generated in a variuos research projects supported by

- PCCL (Borealis), until 2009
- K_{APMT} (Borealis), since 2010 and
- ACCM (ECS), since 2011

Thank you for your attention

Institute of Polymer Product Engineering

Prof. Dr. Zoltan MAJOR Adresse: Altenberger Straße 69, A-4040 Linz E-mail: zoltan.major@jku.at Tel: +43 (0)732 / 2468 6591 Internet: www.jku.at/ippe