4a Technologietag 2012 - Kunststoffe Prüfen und Simulieren

Simulation kurzzeitdynamischer Vorgänge unter Berücksichtigung thermomechanischer Effekte in der Materialmodellierung von Polyamid6

Joachim Strauch

Prof. Dr. habil. Dr. h.c. Holm Altenbach

Dr. Florian Becker

Prof. Dr. habil. Stefan Kolling

Robert Bosch GmbH, Zentralbereich Forschung und Vorausentwicklung Kunststofftechnik

IFME, Otto-von-Guericke-Universität, Magdeburg

DKI Deutsches Kunststoff Institut, Darmstadt

IMM, TH Mittelhessen, Gießen

CR/APP2-Strauch | 16.02.2012 | © Robert Bosch GmbH 2012. Alle Rechte vorbehalten, auch bzgl. jeder Verfügung, Verwertung, Reproduktion, Bearbeitung, Weitergabe sowie für den Fall von Schutzrechtsanmeldungen.

1

Inhalt

2

- Motivation
- Charakterisierungsversuche
- Materialmodellierung
- Verifizierung am Zugversuch
- Validierung am Durchsto
 ßversuch
- → Zusammenfassung, Ausblick

Anwendungsbeispiel: Fallsimulation von Elektrowerkzeugen

→	Typische unverstärkte Gehäusematerialien:	<u>PA6</u> , ABS/PA, PP	
→	Typische Fallhöhen im Falltest:	1 m bis 3 m	
→	Maximale Dehnraten im Kunststoffgehäuse:	≈ 10³ 1/s	
→	Interessierender Zeitbereich		
	(Aufprall bis maximale Verformung) :	$\approx 10 \text{ ms}$	
→	Maximale Verzögerungen:	$\approx 10^3 \text{ m/s}^2$	

Materialmodellierung unverstärkter Thermoplaste

Wichtige Einflussgrößen

- Zug-, Schub-, Druckasymmetrie
- → Dehnrate
- → Temperatur
- → Feuchtegehalt (z.B. bei PA6)

Bekannte Modellansätze σ = σ (ϵ , d ϵ /dt, T)

- → Johnson-Cook
- → G'sell-Jonas
- Cowper-Symonds
 (keine Temperaturabhängigkeit)

4

Quasistatische Zugversuche an PA6 bei RT

6

Quasistatische Zugversuche an PA6 bei RT

Nachweis verformungsinduzierter Probenerwärmung

- Beobachtung: Zunehmende Entfestigung mit steigender Abzugsgeschwindigkeit
- Hypothese: Effekt verursacht durch Eigenerwärmung
- Bestätigung der Hypothese durch Experimente mit Thermokamera

Vorstudie

Vorgehen

- Zugversuche bei verschiedenen "moderaten" Abzugsgeschwindigkeiten
- → Auswahl eines dehnraten- und temperaturabhängigen Materialmodells
- Berücksichtigung der Eigenerwärmung über Energiequellterm
- Parameterermittlung durch Reverse Engineering
- Anwendung Materialmodell in kurzeitdynamischem Belastungsfall (Plattendurchstoßversuch)

Versuche

- Material: Polyamid 6 unverstärkt, trocken
- Durchgeführte Zugversuche bei RT:
 v = [1; 5; 10; 25; 50; 100; 500 mm/min]
- Einsatz der Thermokamera bis 25 mm/min (Einschränkung durch Bildfrequenz 1 Hz)

Charakterisierungsversuche

9

Zugversuche bei 1 mm/min und 25 mm/min

- Gute Reproduzierbarkeit der Temperaturkurven
- Leichte Temperaturabnahme bis zur Streckgrenze (Thermoelastischer Effekt)
- Deutliche Temperaturzunahme nach der Streckgrenze
- Temperatursprung bei Versagenseintritt

Charakterisierungsversuche

Bruchverhalten

- Aufschmelzen im Versagensbereich
- Deformationsverhalten orientierungsabhängig
- Unterschiedliche Lichtreflexion

Materialmodellierung

Ausgewähltes Materialmodell

- Lineare Elastizität
 - E-Modul: E = E(T)
 - Querkontraktionszahl: v = v(T)
- → J2-Plastizität mit isotroper Verfestigung
 - Verfestigungskurven dehnraten- und temperaturabhängig
 - Modellansatz: erweiterter G'sell + Jonas
- Erwärmung über Temperaturquellterm
 - Energiefreisetzung durch plastische Verformungsarbeit
 - Thermoelastischer Effekt wird vernachlässigt
- Implementierung des Materialmodells
 - ABAQUS/Standard[®] : Elastizität und Erwärmung über Standardmodelle Plastizität über UHARD.f
 - ABAQUS/Explicit[®]: Alle Gleichungen in VUMAT.f implementiert

11

Materialmodellierung

Modell für Verfestigungsverhalten

Modifizierter G'sell-Jonas:

$$\sigma(\varepsilon_{pl}, \dot{\varepsilon}_{pl}, T) = \left(\sigma_0 + (K - \sigma_0) \cdot (\frac{\dot{\varepsilon}_{pl}}{\dot{\varepsilon}_0})^m \cdot (1 - e^{-W \cdot \varepsilon_{pl}}) \cdot e^{h_1 \cdot \varepsilon_{pl}^{h_3}}\right) \cdot e^{-a \cdot (T - T_R)}$$

Materialmodellierung

Beschreibung der Eigenerwärmung

ABAQUS/Standard® (*INELASTIC HEAT)

Energiefreisetzungsrate durch plastische Arbeit

$$\dot{q} = \frac{dQ}{V \cdot dt} = \eta \cdot \sigma_{Mises} \dot{\varepsilon}^{pl}$$

ABAQUS/Explicit[®] (Implementierung in vumat.f)

→ Temperaturänderung durch Energieaufnahme bzw. –abgabe

$$dT = \frac{1}{c \cdot m} dQ = \frac{1}{c \cdot \rho \cdot V} dQ$$

Materialerwärmung durch plastische Arbeit

$$dT = \frac{\eta}{c \cdot \rho} \sigma_{Mises} \dot{\varepsilon}^{pl} dt$$

Datenbasis für die Parameteridentifikation

Gemittelte Messkurven aus Zugversuchen an PA6 (bis 50 mm/min):

Simulationsmodell für den Zugversuch

ABAQUS/Standard®

- Volle thermisch-mechanische Kopplung
- Plastizität über Subroutine UHARD.f
- Eigenerwärmung über Standardmodell *INELASTIC HEAT

Übersicht Modellparameter

Modell enthält 20 freie Parameter

- Hohe Anzahl von Iterationen bis zur konvergenten Lösung
- Lösung möglicherweise nicht eindeutig

Ziel

- Direkte Bestimmung möglichst vieler Modellparameter
- Auffinden möglichst guter und realistischer Startbedingungen

Modellansatz	Anzahl Parameter	direkt bestimmbar	Reverse Engineering
Elastischer Anteil	6	6	0
Viskoplastischer Anteil	10	5	5
Thermischer Anteil (Eigenerwärmung)	4	4	0
Σ	20	15	5

Parameteroptimierung mit Software LS-Opt[®] v4.1

👸 "Eigener waermung" (File: com) Metamodel-based optimization 🍥 📀 📀																			
<u>File View Task Help</u>																			
	Info	Strategy	y s	Solver	s Dist	Varia	bles	Sampli	ng Histo	ories	Responses	Objective	Constraints	Algorithms	Run	Viewer	DYNA Stats		
	Design Variables Type Name Starting Init. Range Minimum Maximum																		
	Varia	able	≎ 🗊 u_h1 .7436				6			.5	1.				Sa	addle Direction			
	Varia	able	\$	🗊 u_h3			1.8783		1.		1.6	2.1				Minimize	\$		
	Varia	able	\$	6				7			.01	.04					ases		
	Varia	able	\$	6				4			.01	.04					 All List 		
	Varia	able	\$		д п.к		83.				81.	84.					~		
	Cons	stant																	
	Cons	stant	\$		ta				Start	wei	werte								
	Cons	\$	6	ı_sig0				untere Grenze obere Grenze											
	Cons	stant	\$	6	_h2														
	Cons	stant	\$	6	_edot0														
	Cons	stant	\$	6	_Tref														
																~			
	Add	l a Variat	ble]										Delete	a Varial	ble			

Konvergenzverhalten der Parameteroptimierung

- Parameteroptimierung mit LS-Opt[®] v4.1
 - 17 Iterationen bis Erreichen des Konvergenzkriteriums
 - 50 ABAQUS/Standard[®] Simulationen pro Iteration notwendig
 - Circa 39 h CPU-Zeit (4 Prozessoren) auf Linux Cluster
- Beispiel: Konvergenzverhalten von drei Parameter aus viskoplastischem Anteil

a -> Temperatureinfluss

m -> Rateneinfluss

h1 -> Verfestigung

Spannung [MPa]

Viskoplastizitätsmodell mit optimierten Parameter

$$\sigma(\varepsilon_{pl}, \dot{\varepsilon}_{pl}, T) = \left(\sigma_0 + (K - \sigma_0) \cdot (\frac{\dot{\varepsilon}_{pl}}{\dot{\varepsilon}_0})^m \cdot (1 - e^{-W \cdot \varepsilon_{pl}}) \cdot e^{h_1 \cdot \varepsilon_{pl}^{h_3}}\right) \cdot e^{-a \cdot (T - T_R)}$$

Verifizierung am Zugversuch

Vergleich Simulation/Experiment

Verifizierung am Zugversuch

Zugversuch mit v = 25 mm/min; Auswertung bei Verformungsweg = 2,9 mm

Simulation Plattendurchstoßversuch

ABAQUS/Explicit[®]

- Schwache thermisch-mechanische Kopplung
 - Annahme: Adiabate Erwärmung
- → Subroutine vumat.f
 - Lineare Elastizität, temperaturabhängig
 - Viskoplastizität, temperaturabhängig
 - Eigenerwärmung

Durchstoßanlage bei Bosch

Validierung am Durchstoßversuch

Vergleich Simulation/Experiment

Durchstoßversuch mit $v_0 = 4,43$ m/s

Durchstoßversuch mit $v_0 = 4,43$ m/s

Zusammenfassung

- Die Eigenerwärmung beeinflusst signifikant das Deformations- und Versagensverhalten des untersuchten Werkstoffs Polyamid 6
 - Geringe Abkühlung im elastischen Bereich (Thermoelastizität)
 - Erwärmung im plastischen Bereich durch innere Reibung
 - \Rightarrow Überlagerung von Dehnratenverfestigung und Temperaturentfestigung
 - Aufschmelzen des Materials im Bereich der Bruchfläche
- Die Modellierung des Materialverhaltens über einen großen Dehnratenbereich hinweg_erfordert die Berücksichtigung der Eigenerwärmung in der Simulation
- Mit einem ersten elastisch-viskoplastischen Materialmodell und der Berücksichtigung der Eigenerwärmung über einen Energiequellterm (plastische Verformungsarbeit) konnten bereits gute Ergebnisse erzielt werden

Ausblick

- > Im Rahmen der Dissertation (J. Strauch, Robert Bosch GmbH) in Zusammenarbeit mit
 - Prof. H. Altenbach, IFME, Otto-von-Guericke-Universität, Magdeburg
 - Prof. S. Kolling, IMM, TH Mittelhessen, Gießen
 - DKI Deutsches Kunststoff Institut, Darmstadt
 - werden weiterführende Arbeiten durchgeführt:
 - Materialcharakterisierung an Zug-, Schub- und Druckversuchen mit lokaler Dehnungsmessung und <u>gleichzeitiger</u> Messung der Oberflächentemperatur in einem großen Dehnratenbereich (im Zug zwischen 1E-3 bis 1E2 1/s)
 - Erweiterung des elastisch-viskoplastischen Materialmodells um die Abbildung der Zug-, Schubund Druckasymmetrie und dessen Implementierung in ABAQUS/Explicit[®]
 - Parameteridentifikation
 - Validierung des Materialmodells am Bauteilversuch

Versuchsaufbau am DKI

- Schnellzerreißzugprüfmaschine:
 Amsler HTM 5020 der Firma Zwick/Roell
 mit piezoelektrischer Kraftmessdose
- Optische Dehnungsmessung:
 - Ultima APX-RS der Firma Photron
- → Thermografiesystem:

ImageIR 5380 der Firma InfraTec, Dresden Verwendete Bildraten:

- 2500 Hz bei 80x64 Pixel
- 3000 Hz bei 80x32 Pixel

Zugversuche bei 23°C

Temperaturkurven -> gestrichelt

Scherbandbildung im dynamischen Zugversuch

Zusammenhang zwischen Deformationsverhalten und Eigenerwärmung

Temperatur [°C]

Quasistatischer Zugversuch (0,6 mm/min)

Videos zu den Thermografiemessungen

Dynamischer Zugversuch (1 m/s)

