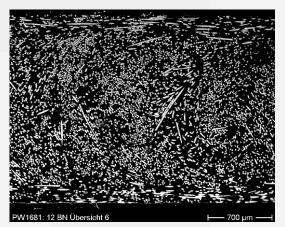
4a Technologietag 2011 Leichtbau auf dem Prüfstand

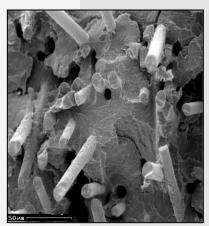
Integrative Simulation – Berücksichtigung der prozessbedingten Anisotropie

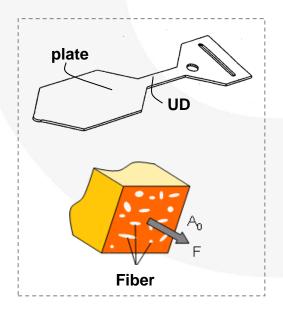
P. Reithofer, T. Wimmer, B. Jilka 4a engineering GmbH, Traboch, Austria

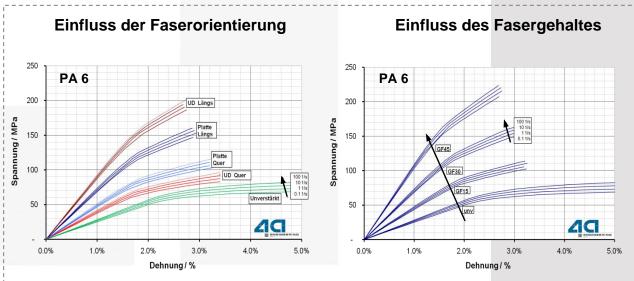
Inhalt

- Werkstoffverhalten
 - Überblick
 - Unverstärkt vs. Verstärkt
 - Einflussgrößen
 - Faserorientierung in typischen Bereichen
- Materialmodell
 - Mikromechanik
 - Einfluss Faserlänge und -orientierung
 - Vergleich Biegesteifigkeit einer Platte
- Integrative Simulation
 - Überblick
 - Ablaufschema
- Integrative Simulation Fallbeispiel Heckklappe
 - Prozesssimulation
 - Faserlänge und orientierung
 - Materialcharakterisierung
 - Mapping
 - Validierung Bauteilversuche
 - Eigenfrequenz
 - Bauteilsteifigkeit Biegung und Torsion
- Zusammenfassung


Werkstoffverhalten Überblick




Wesentliche Einflussgrößen sind Fasergehalt und -form. Mit steigendem Fasergehalt steigt der Einfluss der Orthotropie und sinkt der anteilige matrixbedingte Einfluss der Dehnrate.


Werkstoffverhalten ist

- orthotrop
- viskoelastisch
- viskoplastisch

Werkstoffverhalten unverstärkt vs. faserverstärkt

Unverstärktes PA6

Zytel® 7301 NC010 | PA6 | DuPont Engineering Polymers - 2008-01-15

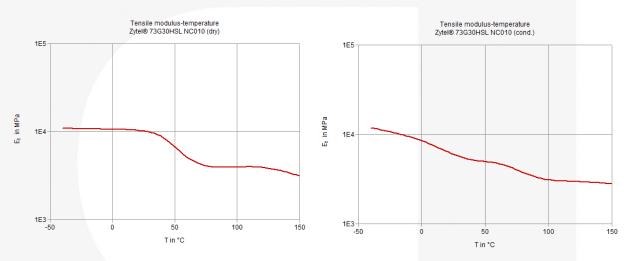
30% Glasfaser verstärktes PA6

Zytel® 73G30L NC010 | PA6-GF30 | DuPont Engineering Polymers - 2008-01-15

Mechanische Eigenschaften	tr. / cond.	Einheit	Prüfnorm	Rheologische Eigenschaften	tr. / cond.	Einheit	Prüfnorm
Zug-Modul	2900 / 1500	MPa	ISO 527-1/-2	Verarbeitungsschwindung parallel	0.2 / *	%	ISO 2577, 294-4
Streckspannung	80 / 50	MPa	ISO 527-1/-2	Verarbeitungsschwindung senkrecht	0.7 / *	%	ISO 2577, 294-4
Streckdehnung	4.5 / -	%	ISO 527-1/-2				
Nominelle Bruchdehnung	25 / -	%	ISO 527-1/-2	Mechanische Eigenschaften	tr. / cond.	Einheit	Prüfnorm
Bruchdehnung	50 / >50	%	ISO 527-1/-2	Zug-Modul	9500 / 6000	MPa	ISO 527-1/-2
Charpy-Schlagzähigkeit (+23℃)	N/N	kJ/m²	ISO 179/1eU	Bruchspannung	190 / 120	MPa	ISO 527-1/-2
Charpy-Kerbschlagzähigkeit (+23℃)	6/-	kJ/m²	ISO 179/1eA	Bruchdehnung	3.5 / 5.5	%	ISO 527-1/-2
, , , , , , , , , , , , , , , , , , ,				Charpy-Schlagzähigkeit (+23℃)	100 / 100	kJ/m²	ISO 179/1eU
Thermische Eigenschaften	tr. / cond.	Einheit	Prüfnorm	Charpy-Schlagzähigkeit (-30℃)	80 / 80	kJ/m²	ISO 179/1eU
Schmelztemperatur (10℃/min)	221 / *	°	ISO 11357-1/-3	Charpy-Kerbschlagzähigkeit (+23℃)	13 / 21	kJ/m²	ISO 179/1eA
Formbeständigkeitstemperatur (1.8 MPa)	55 / *	°C	ISO 75-1/-2	Charpy-Kerbschlagzähigkeit (-30℃)	10 / 21	kJ/m²	ISO 179/1eA
Formbeständigkeitstemperatur (0.45 MPa)	160 / *	°C	ISO 75-1/-2				
Längenausdehnungskoeffizient (parallel)	0.7 / *	E-4/℃	ISO 11359-1/-2	Thermische Eigenschaften	tr. / cond.	Einheit	Prüfnorm
Längenausdehnungskoeffizient (senkrecht)	1/*	E-4/℃	ISO 11359-1/-2	Schmelztemperatur (10℃/min)	221 / *	C	ISO 11357-1/-3
zangonacom in ngonocin zioni (com nocin)	• •	, 0		Formbeständigkeitstemperatur (1.8 MPa)	210 / *	C	ISO 75-1/-2
Elektrische Eigenschaften	tr. / cond.	Einheit	Prüfnorm	Formbeständigkeitstemperatur (0.45 MPa)	220 / *	C	ISO 75-1/-2
Dielektrizitätszahl (1 MHz)	3.5 / 7	-	IEC 60250	Längenausdehnungskoeffizient (parallel)	0.15 / *	E-4/℃	ISO 11359-1/-2
Spezifischer Durchgangswiderstand	1E13 / -	Ohm*m	IEC 60093	Längenausdehnungskoeffizient (senkrecht)	1/*	E-4/℃	ISO 11359-1/-2
				Brennbarkeit bei nominal 1.5mm	HB / *	class	IEC 60695-11-10
Andere Eigenschaften	tr. / cond.	Einheit	Prüfnorm	geprüfte Probekörperdicke	1.5 / *	mm	IEC 60695-11-10
Wasseraufnahme	9.5 / *	%	Ähnlich ISO 62	UL Registrierung	UL / *		
Feuchtigkeitsaufnahme	3 / *	%	Ähnlich ISO 62	Brennbarkeit bei Dicke h	HB / *	class	IEC 60695-11-10
Dichte	1130 / -	kg/m³	ISO 1183	geprüfte Probekörperdicke	0.8 / *	mm	IEC 60695-11-10
				UL Registrierung	UL / *		
Materialspezifische Eigenschaften	tr. / cond.	Einheit	Prüfnorm	Brennbarkeit-Sauerstoff-Index	21 / *	%	ISO 4589-1/-2
Viskositätszahl	150 / *	cm³/g	ISO 307, 1157,				
		Ŭ	1628	Andere Eigenschaften	tr. / cond.	Einheit	Prüfnorm
				Wasseraufnahme	6.3 / *	%	Ähnlich ISO 62
Merkmale				Feuchtigkeitsaufnahme	1.9 / *	%	Ähnlich ISO 62
Regionale Verfügbarkeit				Dichte	1360 / -	ka/m³	ISO 1183

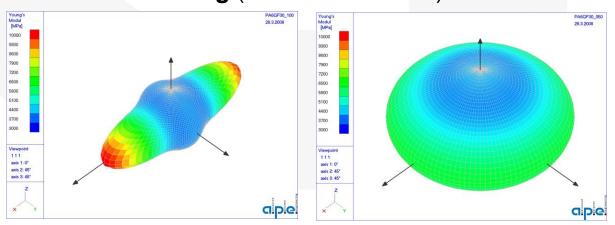
Quelle: Campus www.campusplastics.com

Dichte


© 4a engineering GmbH, all rights reserved

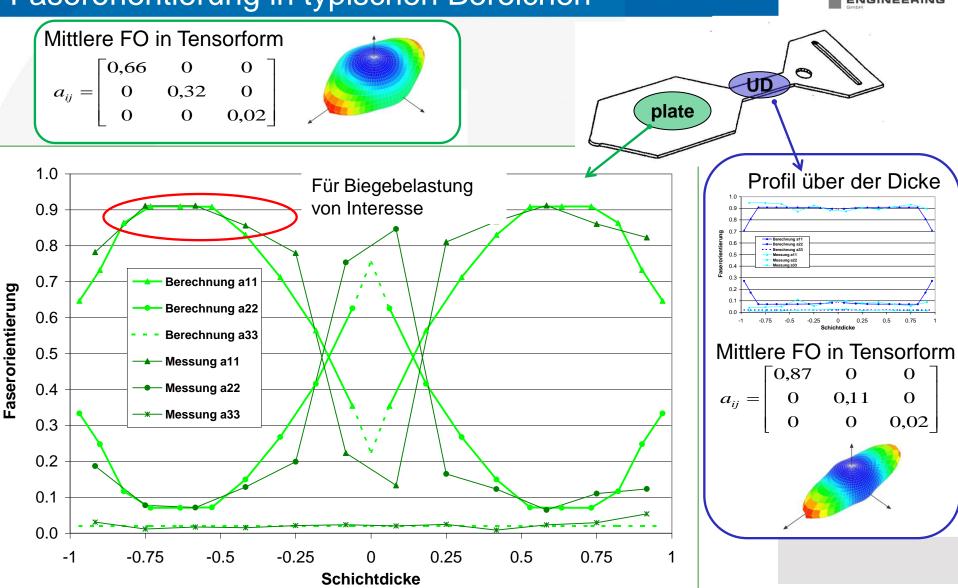
Nordamerika; Süd und Zentral-Amerika

Werkstoffverhalten Einflussgrößen


Temperatur / Feuchte (Quelle Campus Materialdatenbank)

Abnahme des E-Moduls im luftfeuchten Zustand um ca. 40% (RT)

Bei Temperaturzunahme von 40°C (von RT) Abnahme des E-Moduls um ca. 20% (konditioniert)


Faserorientierung (Quelle Micromec[©])

Je nach Verteilung der Faserorientierung verringert sich der E-Modul quer zur Hauptorientierungsrichtung bis zu 60% (Extremfall einheitliche Orientierung)

Werkstoffverhalten Faserorientierung in typischen Bereichen

Materialmodell Mikromechanik

ENGINEERING

Input

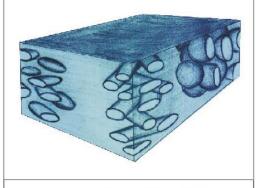
Output

Material Data of Components (E,α,λ)

Matrix Reinforcements Fillers

Data-Base

MicroMec V2.1



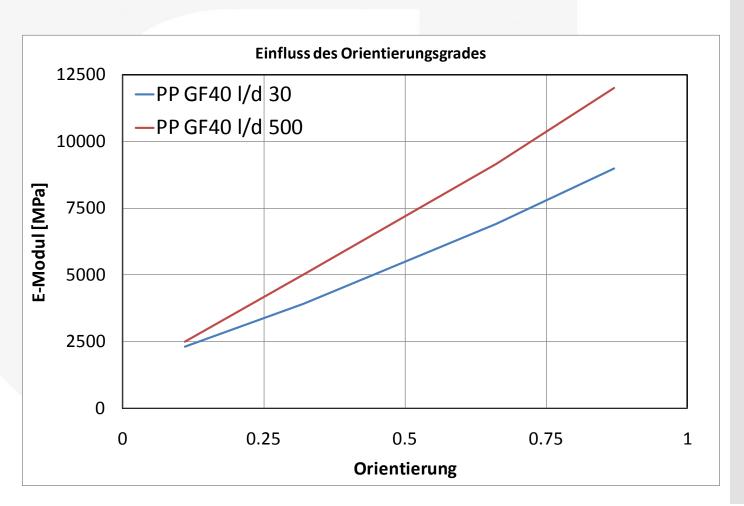
Data-Base

Data-Base

Virtual Material Design

3D Composite Data

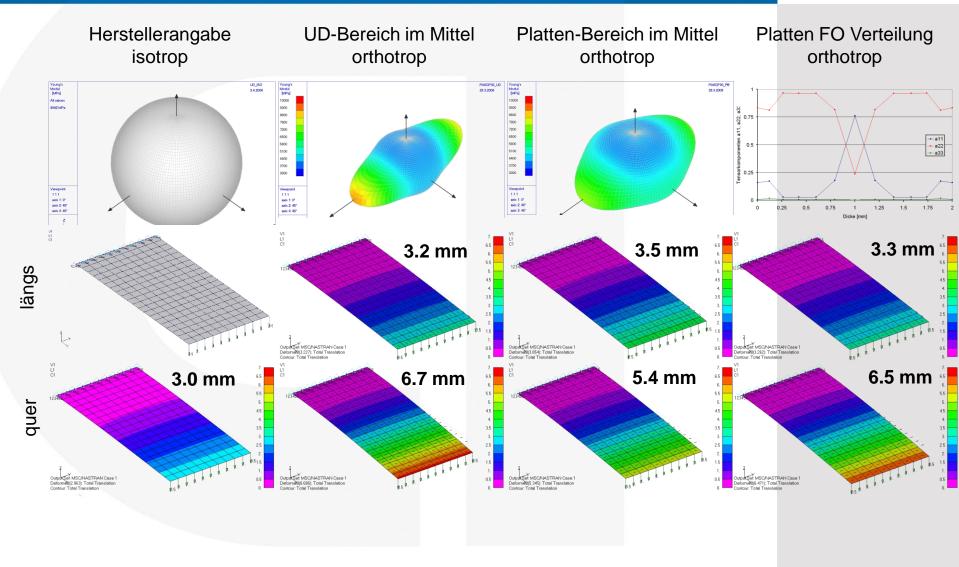
elastic properties thermal expansion thermal conductivity


2D&3D graphics

Interphase to MSC.Nastran 4 Windows

Materialmodell Einfluss Faserlänge und -orientierung

Einfluss der Faserlänge auf den E-Modul abhängig von dem Orientierungsgrad



© 4a engineering GmbH, all rights reserved

Titel: rep_11030202_pr_tw_bj1a_iih_INTEGRATIVESIMULATION.ppt

Materialmodell Vergleich Biegesteifigkeit einer Platte

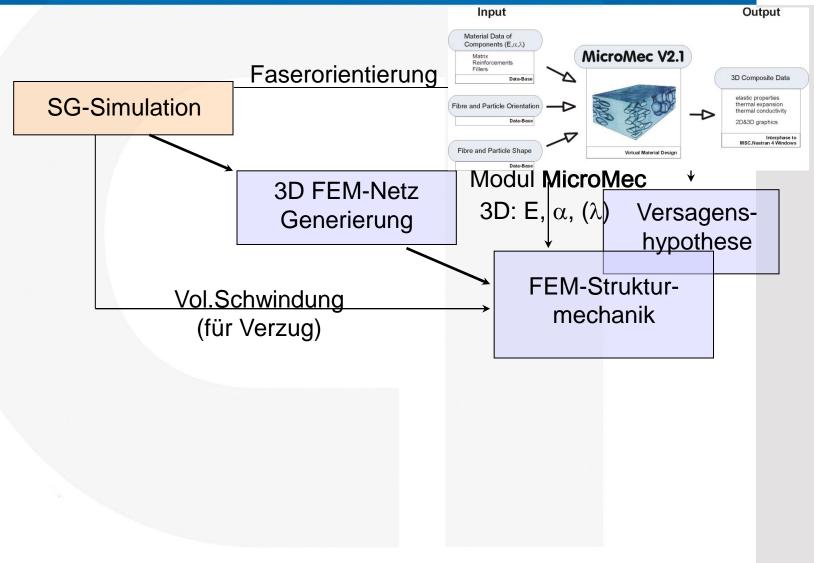
Integrative Simulation Überblick

Prozesssimulation

typischerweise Spritzguss (Füllung, Nachdruck, Kühlung, Verzug,) Software: Moldfolw, CAD-Mould, Moldex, uvm.

Struktursimulation

(statisch, dynamisch, thermisch,) Software: Nastran, LS-DYNA, Abagus, Ansys, uvm.


Aufgrund der Forderung der vollständigen virtuellen Abbildung

- → Trend zur Interaktion von Prozess- und Struktursimulation um
- Werkstoffspezifisches Verhalten Prozessbedingte Anisotropien (Faserorientierung, Bindenähte, Aufschäumungsgrade ...) abzubilden
- Belastungsspezifisches Verhalten Belastungsgeschichte aufgrund des Füllvorgangs auf Einlegeteile abzubilden oder Sonderverfahren wie das Hinterspritzen von Textilien überhaupt zu simulieren

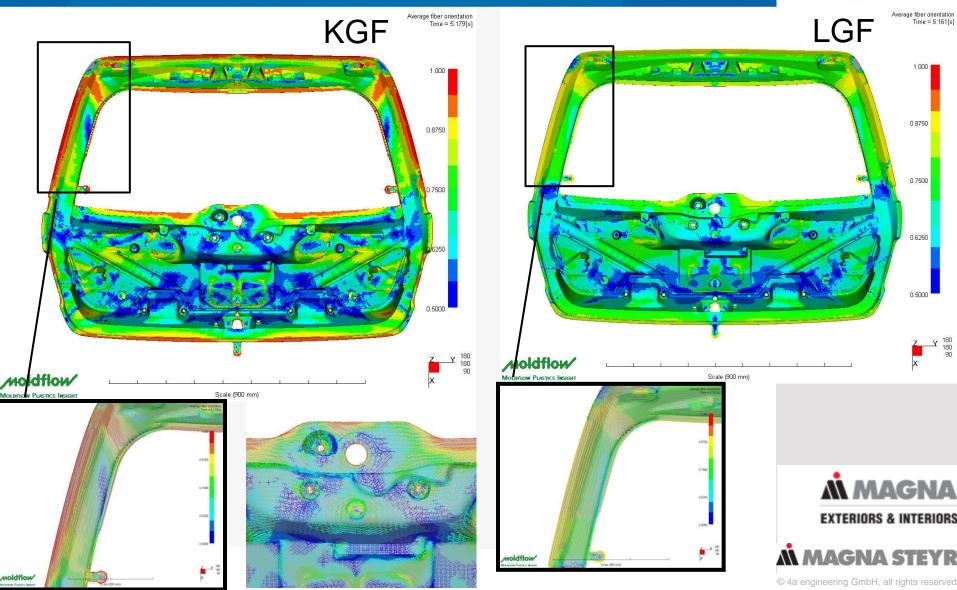
pteraktion

Integrative Simulation Generelles Analyse-Schema





Integrative Simulation – Fallbeispiel Heckklappe


© 4a engineering GmbH, all rights reserved

Autor: Peter Reithofer, Thomas Wimmer, Bernhard Jilka

Titel: rep_11030202_pr_tw_bj1a_iih_INTEGRATIVESIMULATION.ppt

Integrative Simulation – Fallbeispiel Heckklappe Berechnete Faserorientierung

Autor: Peter Reithofer, Thomas Wimmer, Bernhard Jilka

Titel: rep_11030202_pr_tw_bj1a_iih_INTEGRATIVESIMULATION.ppt

н

S

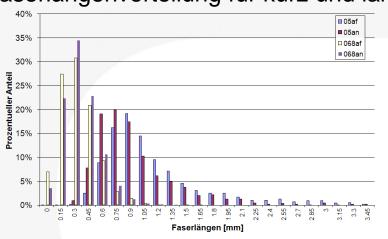
C

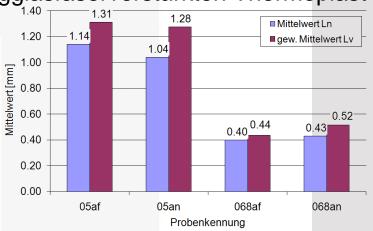
S

N

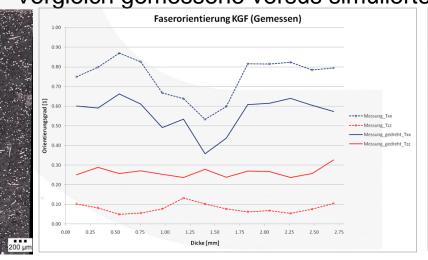
E

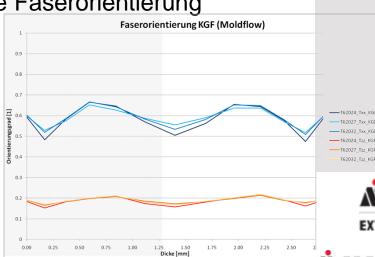
R


s

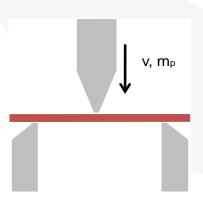

s T

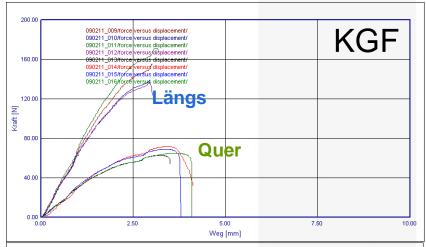
Integrative Simulation - Fallbeispiel Heckklappe Faserlänge und -orientierung

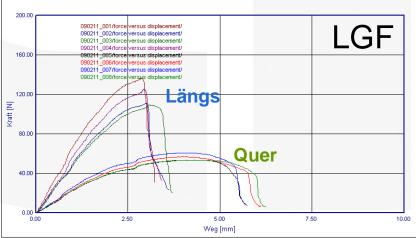


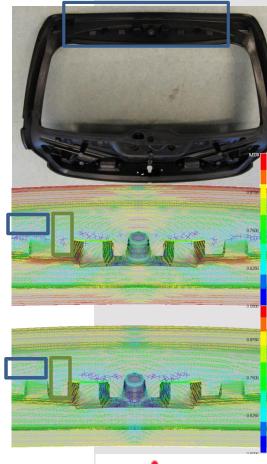

Faserlängenverteilung für kurz und langglasfaserverstärkten Thermoplast

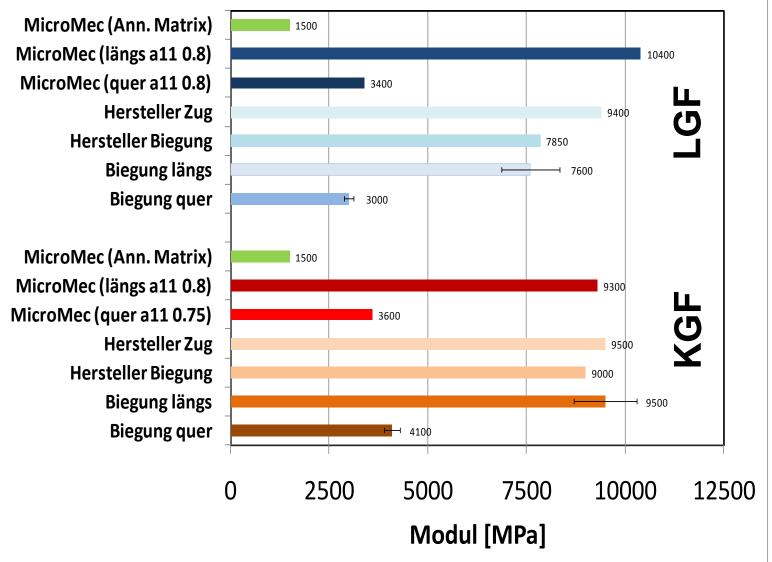
Vergleich gemessene versus simulierte Faserorientierung



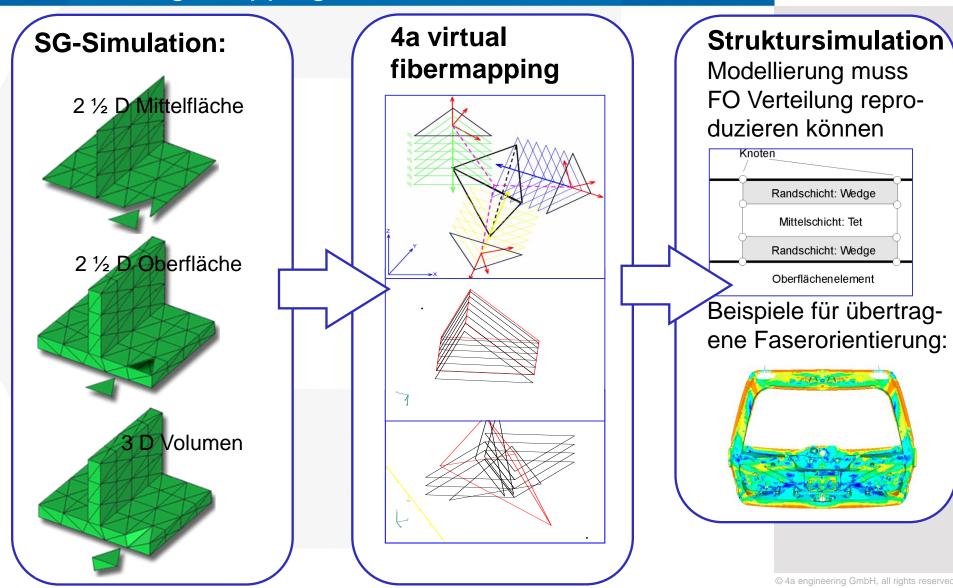

Integrative Simulation – Fallbeispiel Heckklappe Materialcharakterisierung




3-Punkt-Biegeprüfung

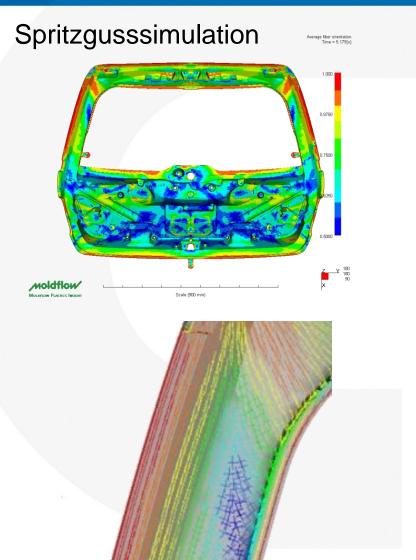


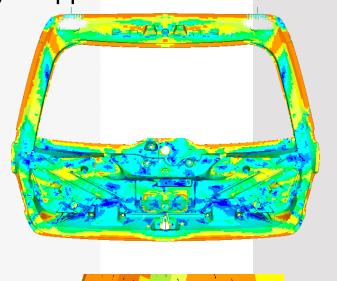
Integrative Simulation – Fallbeispiel Heckklappe Vergleich Messung, Herstellerdaten, Mikromechanik

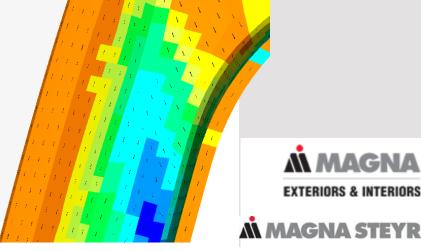

: 16/23

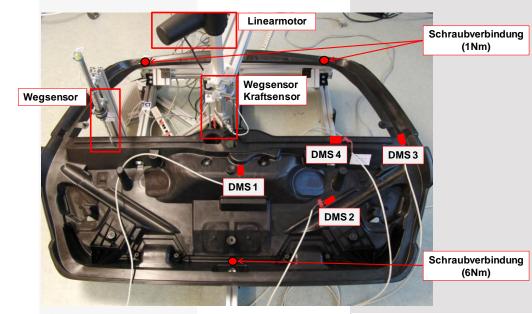
Autor: Peter Reithofer, Thomas Wimmer, Bernhard Jilka Datum: 110302

Titel: rep_11030202_pr_tw_bj1a_iih_INTEGRATIVESIMULATION.ppt


Integrative Simulation - Fallbeispiel Heckklappe Idealisierung, Mapping

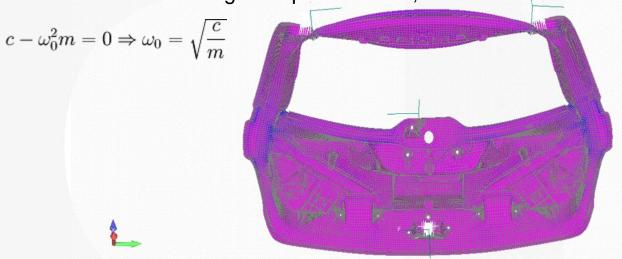


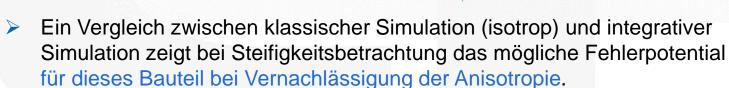

Integrative Simulation – Fallbeispiel Heckklappe Mapping - Faserorientierung


Integrative Simulation – Fallbeispiel Heckklappe Validierung Bauteilversuche

<u>Eigenfrequenz</u>
Messung der Eigenfrequenz
mit Hilfe eine Exzenters

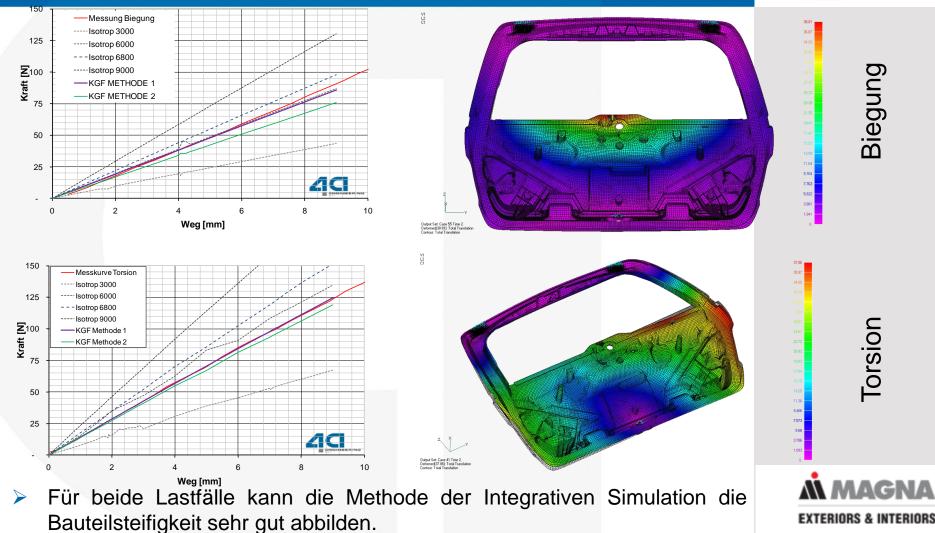
Bauteilsteifigkeit Überprüfung der Bauteilsteifigkeit für die Lastfälle Biegung und Torsion





Integrative Simulation – Fallbeispiel Heckklappe Struktursimulation Eigenfrequenz-Analyse

Die Messung ergab eine 2. Eigenfrequenz von 16,7 ± 0,4 Hz. Unter Berücksichtigung der Faserorientierung mit Hilfe der integrativen Simulation wird eine Eigenfrequenz von 16,8 Hz erzielt.


Eigenfreq.	ISO3000	ISO6000	ISO6800	ISO9000	KGF_RAND	KGF_AVG
1	52%	105%	118%	157%	95%	100%
2	47%	94%	106%	141%	87%	100%
3	50%	99%	112%	149%	96%	100%
4	47%	94%	106%	141%	92%	100%

Integrative Simulation - Fallbeispiel Heckklappe Struktursimulation Bauteilsteifigkeit

Ohne nähere Kenntnis zu Anisotropem Materialverhalten kann eine A MAGNA isotrope Beurteilung extrem fehlerbehaftet sein.

Zusammenfassung

- Durch Integrative Simulation ist es möglich, abgesichert Steifigkeitsanalysen durchzuführen und damit mögliche Fehlannahmen in den Materialeigenschaften zu verhindern.
- ➤Ohne Messungen (Biegeversuche längs und quer) oder mikromechanischen Modellen ist eine isotrope Auslegung extrem unsicher. Das Fehlerpotential kann nicht richtig abgeschätzt werden.
- Anzumerken gilt es, dass lokale Effekte der Anisotropie vor allem für lokale Steifigkeiten und insbesondere der Festigkeitsbeurteilung von Interesse sind.

Vielen Dank für Ihre Aufmerksamkeit!