	MATFEM
	Partnerschaft Dr. Gese & Oberhofer Maschinenbauingenieure
Modelling Short-Fiber Reinforced Polymers	
with Material Model MF GenYld+CrachFEM	
4A Engineering Technologietage, 3. + 4. März 2011, Schladming, Austria	
G. Oberhofer	Authors
March 2011	Date
Copyright MATFEM 2011	www.matfem.de

 Modelling Short-Fiber Reinforced Polymers with MF GenYld+CrachFEM Introduction of MATFEM Material Model MF GenYld + CrachFEM Established Description of Non-Reinforced Polymers with MF-GenYld+CrachF The Anisotropy of Short Fiber Reinforced Polymers Applicability of MF GenYld + CrachFEM for Short Fiber Reinforced Polymers Validation by Simulation of Basic Test Cases Validation by Simulation of Component Test Future Development 	Content	MATFEM
 Introduction of MATFEM Material Model MF GenYld + CrachFEM Established Description of Non-Reinforced Polymers with MF-GenYld+CrachF The Anisotropy of Short Fiber Reinforced Polymers Applicability of MF GenYld + CrachFEM for Short Fiber Reinforced Polymers Validation by Simulation of Basic Test Cases Validation by Simulation of Component Test Future Development 	Modelling Short-Fiber Reinforced Polymers with MF	GenYld+CrachFEM
 Material Model MF GenYld + CrachFEM Established Description of Non-Reinforced Polymers with MF-GenYld+CrachF The Anisotropy of Short Fiber Reinforced Polymers Applicability of MF GenYld + CrachFEM for Short Fiber Reinforced Polymers Validation by Simulation of Basic Test Cases Validation by Simulation of Component Test Future Development 	Introduction of MATFEM	
 Established Description of Non-Reinforced Polymers with MF-GenYld+CrachF The Anisotropy of Short Fiber Reinforced Polymers Applicability of MF GenYld + CrachFEM for Short Fiber Reinforced Polymers Validation by Simulation of Basic Test Cases Validation by Simulation of Component Test Future Development 	Material Model MF GenYld + CrachFEM	
 The Anisotropy of Short Fiber Reinforced Polymers Applicability of MF GenYld + CrachFEM for Short Fiber Reinforced Polymers Validation by Simulation of Basic Test Cases Validation by Simulation of Component Test Future Development 	 Established Description of Non-Reinforced Polymore 	ers with MF-GenYld+CrachF
 Applicability of MF GenYld + CrachFEM for Short Fiber Reinforced Polymers Validation by Simulation of Basic Test Cases Validation by Simulation of Component Test Future Development 	► The Anisotropy of Short Fiber Reinforced Polymer	rs
 Validation by Simulation of Basic Test Cases Validation by Simulation of Component Test Future Development 	Applicability of MF GenYld + CrachFEM for Short	Fiber Reinforced Polymers
Validation by Simulation of Component TestFuture Development	 Validation by Simulation of Basic Test Cases 	
 Future Development 	 Validation by Simulation of Component Test 	
	 Future Development 	
	44 Engineering Technologistage 2 + 4 Mörz 2044 Schladming Austria	

Content	MATFEM	
Modelling Short-Fiber Reinforced Polymers with MF GenYld+Crack	hFEM	
 Introduction of MATFEM Material Model MF GenYld + CrachFEM Established Description of Non-Reinforced Polymers with MF-Ge The Anisotropy of Short Fiber Reinforced Polymers Applicability of MF GenYld + CrachFEM for Short Fiber Reinforce Validation by Simulation of Basic Test Cases Validation by Simulation of Component Test Future Development 	enYld+CrachFE ed Polymers	Μ
4A Engineering Technologietage, 3. + 4. März 2011, Schladming, Austria Copyright MA	TFEM 2011 4	

Example – Tension and Compression Test	MATFEM	
Simulation assuming isotropic v. Mises Plasticity		
► The force displacement curve of the uniaxial tensile test in reference direction (principal direction of fiber orientation) can be predicted with good accuracy		
 The force displacement curve of the uniaxial tensile test in cross direct predicted correctly 	tion <u>cannot</u> be	
 The asymmetric hardening behaviour between tension and compressi predicted correctly 	on <u>cannot</u> be	
 The asymmetry of orthotropy <u>cannot</u> be predicted correctly 		
 The elastic orthotropy <u>cannot</u> be prediced correctly 		
 Failure is not considered in this case 		
4A Engineering Technologietage, 3. + 4. März 2011, Schladming, Austria Copyright M	IATFEM 2011 34	

Content	MATFEM	1
► Introduction of MATFEM		
Material Model MF GenYld + CrachFEM		
 Established Description of Non-Reinforced Polymers with MF-G 	GenYld+CrachF	EM
 The Anisotropy of Short Fiber Reinforced Polymers 		
Applicability of MF GenYld + CrachFEM for Short Fiber Reinford	ced Polymers	
 Validation by Simulation of Basic Test Cases 		
 Validation by Simulation of Component Test 		
 Future Development 		
4A Engineering Technologietage, 3. + 4. März 2011, Schladming, Austria Copyright MA	ATFEM 2011 3	38

MF-GenYld+CrachFEM for Reinforced Polymers	MATFEM	
Results		
The force displacement curve of the uniaxial tensile test in reference direction (principal direction of fiber orientation) can be predicted correctly		
The force displacement curve of the uniaxial tensile test in cross direction <u>can</u> be predicted correctly		
 The asymmetric hardening behaviour between tension and compression <u>can</u> be predicted correctly 		
The asymmetry of plastic orthotropy <u>can</u> be predicted correctly		
The elastic orthotropy <u>can</u> be prediced correctly in case of shell discretization		
 Currently the elastic orthotropy <u>cannot</u> be prediced correctly in case of solid discretization (feature available in upcoming releases of version 4) 		
► Failure can be predicted correctly, taking into account different fracture strains in different orientations; the compression test cannot be used to identify the corresponding fracture strain as the state of stress changes at high deformations; the simulation has been evaluated below values of equivalent plastic strain of approximately 40%		
 Currently the orthotropy of fracture <u>cannot</u> be prediced in case of solid c (feature available in upcoming releases of version 4) 	discretization	
4A Engineering Technologietage, 3. + 4. März 2011, Schladming, Austria Copyright MA	TFEM 2011 42	

