

Simulation von Faserverbundwerkstoffen

<u>T. Wimmer</u>, M. Fritz, P. Reithofer (4a engineering GmbH, Traboch- A)

4a Technologietag 2011- Leichtbau auf dem Prüfstand

INHALT Überblick der Themen

Einleitung

- Idealisierung
- Überblick Verbundwerkstoffe
- Einflussgrößen Werkstoff

Berechnung / Simulation

- Mikromechanik
- Laminattheorie
- Versagenshypothese
- Umsetzung FEM

Anwendungsbeispiel

- Jetski
- Drucktank
- Triebwerksbauteil
- Zusammenfassung / Ausblick

П

© 4a technology GmbH, all rights reserved

 Seite:
 2

 Datum:
 04.04.2011

 Autor:
 Thomas Wimmer, Martin Fritz, Peter Reithofer

 Datei:
 rep_vv0_11030404_tw_mf_TT2011.ppt

N PHYSICS WE TRUS

Einleitung Idealisierung

П

N

© 4a technology GmbH, all rights reserved

Datum: 04.04.2011 Thomas Wimmer, Martin Fritz, Peter Reithofer rep_vv0_11030404_tw_mf_TT2011.ppt

Seite:

Autor Datei P w

- Kurzfaserverstärkte Thermoplaste
- Langfaserverstärkte Thermoplaste
- Endlosfaserverstärkte Werkstoffe

 Seite:
 4

 Datum:
 04.04.2011

 Autor:
 Thomas Wimmer, Martin Fritz, Peter Reithofer

 Datei:
 rep_vv0_11030404_tw_mf_TT2011.ppt

Einleitung Einflussgrößen Werkstoff

 Seite:
 5

 Datum:
 04.04.2011

 Autor:
 Thomas Wimmer, Martin Fritz, Peter Reithofer

 Datei:
 rep_vv0_11030404_tw_mf_TT2011.ppt

PHYS

N

V Е Т

0 3

Berechnung / Simulation Mikromechanik - Annahmen und Randbedingungen

- Mikroskopisch inhomogener Werkstoff (Faser, Matrix, Interphase)
- Homogenisierte Eigenschaften des Verbundes aus den Eigenschaften der Einzelkomponenten (Steifigkeiten, Volumenanteile, Orientierungen)
- Dadurch wird eine makroskopische Betrachtung des Verbundes als "homogener" Werkstoff möglich
- Randbedingungen:
 - Verbund ist makroskopisch homogen und linear elastisch
 - Isotrope Matrix
 - Perfekte Faser-Matrixhaftung (Schlichte Einfluss vernachlässigt)
 - Repräsentatives Volumenelemente
- Ansätze wie zum Beispiel:
 - Mischungsansätze (z.B. nach Jones für UD-Schicht)

N

- Mean Field Theorie nach Mori-Tanaka (Komplexe Orientierungen)
- FE-Ansätze (DigiMat, Palmyra, Einheitszellenuntersuchungen mit kommerziellen FEM- Tools)

© 4a technology GmbH, all rights reserved

04.04.2011 Datum: Datei:

Thomas Wimmer, Martin Fritz, Peter Reithofer rep_vv0_11030404_tw_mf_TT2011.ppt

N

Berechnung / Simulation Laminat Theorie (CLT)

© 4a technology GmbH, all rights reserved

Voraussetzungen:

linear elastisch Schichten ideal verklebt sämtliche Belastungen in der Ebene (2D)

-> Ebener Spannungszustand

Lasten pro Breite Laminat: n [N/mm], m [Nmm/mm]

Aussagen: Verformung des Gesamtsystems Spannungen in den einzelnen Schichten im lokalen KO

Software: Lam-2D von 4a engineering GmbH (inkl. therm. Berechnung und Versagenskriterium)

N

 Seite:
 8

 Datum:
 04.04.2011

 Autor:
 Thomas Wimmer, Martin Fritz, Peter Reithofer

 Datei:
 rep_vv0_11030404_tw_mf_TT2011.ppt

PHYSICS WE TR

Bruchkriterien

Festigkeitskennwerte UD-Schicht:

CFK-HT [MPa]	σι	σ	τ #
Zug	1610	36	109
Druck	-1810	-218	

П

N

Ε

2-D Schichtspannungen Iokales KO

 $> \tau^{ils}$ interlaminare Scherfestigkeit

© 4a	technology	GmbH,	all rights	reserved
------	------------	-------	------------	----------

 Datum:
 04.04.2011

 Autor:
 Thomas Wimmer, Martin Fritz, Peter Reithofer

 Datei:
 rep_vv0_11030404_tw_mf_TT2011.ppt

Seite:

HYSICS WE TRU

Berechnung / Simulation Versagenshypothesen

 σ^{\perp}

© 4a technology GmbH, all rights reserve

Pauschal-Bruchkriterien

Versagenskörper Ellipsoide Geben keine Aufschlüsse über Art des Bruches

 $\left(\frac{\sigma^{\mathrm{II}}}{\sigma^{\mathrm{zul},\mathrm{II}}_{\mathrm{Zug}\,\mathrm{Druck}}}\right)^{2} + \left(\frac{\sigma^{\perp}}{\sigma^{\mathrm{zul},\perp}_{\mathrm{Zug}\,\mathrm{Druck}}}\right)^{2} - \left(\frac{\sigma^{\mathrm{II}}\sigma^{\perp}}{\sigma^{\mathrm{zul},\mathrm{II}}_{\mathrm{Zug}\,\mathrm{Druck}}}\right) + \left(\frac{\tau^{\#}}{\tau^{\mathrm{zul},\#}}\right)^{2} < 1$

Hill: einzelne Ellipsoide Hoffmann: ein verschobenes Ellipsoid Tsai-Wu: verschobenes und gedrehtes Ellipsoid Interaktionskoeff., gefährlich im Druckbereich

- Versagensindex: "linke Seite der Gleichung"
- ≈ ² der zulässigen Belastung
- < 1 Belastung ertragbar
- > 1 Bruch

auch negative Werte möglich (Tsai-Wu)

 $\tau^{\#}$

u: 04.04.2011 Thomas Wimmer, Martin Fritz, Peter Reithofer rep_vv0_11030404_tw_mf_TT2011.ppt

Seite: Datum

Autor

Datei

N PHYSICS WE TRU

Berechnung / Simulation Versagenshypothesen

Kombinierte Bruchkriterien nach Puck

- Faserbruch Zwischenfaserbruch
- Reserve Faktoren f
 ür FB und ZFB

© 4a technology GmbH, all rights reserved

 Datum:
 04.04.2011

 Autor:
 Thomas Wimmer, Martin Fritz, Peter Reithofer

 Datei:
 rep_vv0_11030404_tw_mf_TT2011.ppt

Seite:

IN PHYSICS WE TRUS

Berechnung / Simulation Versagenshypothesen

Kombinierte Bruchkriterien nach Puck

auch f
ür 3-dimensionalen Spannungszustand verwendbar

N

 Seite:
 12

 Datum:
 04.04.2011

 Autor:
 Thomas Wimmer, Martin Fritz, Peter Reithofer

 Datei:
 rep_vv0_11030404_tw_mf_TT2011.ppt

© 4a technology GmbH, all rights reserved

Berechnung / Simulation Implementierung FE-Codes

Generelle Umsetzung in FE-Codes

Berechnung der A-B-D Matrix für jedes Element äquivalente Plate-Elemente werden gebildet

→ Bestimmung von 4 anisotropen Vergleichsmaterialien Zug, Biegung, Membran-Biege Kopplung und Schub

Ausgabe der globalen Ergebnisse und der Schichtergebnisse

→ selben Analysen wie f
ür Plate-Elemente m
öglich

N

 Seite:
 13

 Datum:
 04.04.2011

 Autor:
 Thomas Wimmer, Martin Fritz, Peter Reithofer

 Datei:
 rep_vv0_11030404_tw_mf_TT2011.ppt

© 4a technology GmbH, all rights reserved

N

Autor: Thomas Wimmer, Martin Fritz, Peter Reithofer Datei: rep_vv0_11030404_tw_mf_TT2011.ppt

04.04.2011

Seite: Datum:

tensile tests and data fitting by micromechanics (MICROMEC)

© 4a technology GmbH, all rights reserved

 Datum:
 04.04.2011

 Autor:
 Thomas Wimmer, Martin Fritz, Peter Reithofer

 Datei:
 rep_vv0_11030404_tw_mf_TT2011.ppt

IN PHYSICS WE TRUS'

Modelling:

N PHYSICS WE TRUS

Thomas Wimmer, Martin Fritz, Peter Reithofer rep_vv0_11030404_tw_mf_TT2011.ppt Datei:

П

Ν

P

н E S

-

Ξ

W

feasibility study pressure tank composite with thermoplastic matrix

 Seite:
 18

 Datum:
 04.04.2011

 Autor:
 Thomas Wimmer, Martin Fritz, Peter Reithofer

 Datei:
 rep_vv0_11030404_tw_mf_TT2011.ppt

IN PHYSICS WE TRUST

MAT2-ORTHOTROPIC_ELASTIC (pipe)

		thermoelastis	che Eigenscl	haften				
		Ψ [%]	ρ [g/cm³]	E [MPa]	v [-]	α [10 [*] /K]		
Matrix	PP	41	0,9	1200	0,35	170	-	
Füllstoff	E-GLAS	59	2,5	70000	0,23	5	[MPa]	
	Partikelgestalt			Parti	kelorientie	erung	1 24631	1
La	ngfaser			unidir	ektional		2 2395	1
				1.2	3		3 2395	
1	e >>		-				ρ [g/cm³]	
	/d: 500		Neu			•	1,446	

MAT24-PIECWISE_LINEAR_PLASTICITY (liner)

N

$\mathbf{M}_{\Delta}\mathbf{a}_{n+1} + \mathbf{K}_{\Delta}\mathbf{u}_{n+1} = \mathbf{f}_{n+1}^{ext} - \mathbf{f}_{n}^{int} - \mathbf{M}\mathbf{a}_{n}$

Nonlinear Equilibrium Problem:

- find displacements **u** wich statisfy equilibrium $f^{ext} = f^{int}$
- both K, f^{ext} and f^{int} can be nonlinear functions of u
- iterative search using Newton-based method

Linear Algebra Problem:

- solve system of linear algebraic equations $\mathbf{K} \Delta \mathbf{u} = \mathbf{R}$ every nonlinear iteration
- great CPU and memory cost

© 4a technology GmbH, all rights reserved

Datum: 04.04.2011 Thomas Wimmer, Martin Fritz, Peter Reithofer Autor Datei rep_vv0_11030404_tw_mf_TT2011.ppt

Seite:

w

ELEMENT_SHELL_BETA (Fiberorientation) SECTION_SHELL ELEMENTFORM 15 (volume weighted axisymmetric elements) CONTACT_2D_AUTOMATIC_SURFACE_TO_SURFACE

Autor: Thomas Wimmer, Martin Fritz, Peter Re Datei: rep vv0 11030404 tw mf TT2011.ppt

U

s

.

Z - Through thickness stress generated by bending moment in radius

N

Seite: 04.04.2011 Datum: Thomas Wimmer, Martin Fritz, Peter Reithofer rep_vv0_11030404_tw_mf_TT2011.ppt Datei:

stresses generated by bolt pull-out

© 4a technology GmbH, all rights reserved

 Seite:
 23

 Datum:
 04.04.2011

 Autor:
 Thomas Wimmer, Martin Fritz, Peter Reithofer

 Datei:
 rep_vv0_11030404_tw_mf_TT2011.ppt

IN PHYSICS WE TRUS

Zusammenfassung

4a technology GmbH, all rights reser

- Entwicklungszeiten und -kosten senken Kernziel in der F&E der nächsten Jahre und Jahrzehnte
- Virtuelle Simulation

entwickelt sich zum wichtigsten Tool der F&E

N

> Faserverbundbauteile

Nur unter Berücksichtigung der richtungsabhängigen mechanischen Eigenschaften von Faserverbundwerkstoffen kann ihr Potential richtig ausgeschöpft werden.

Die Richtungsabhängigkeit von Faserverbundwerkstoffen wird maßgeblich vom Herstellprozess vorgegeben und bestimmt.

Automatisierte Herstellverfahren

benötigen automatisierte, intelligente und einfach zu verwendende Methoden, um die gesamte Prozesskette möglichst umfassend physikalisch durchleuchten und abbilden zu können → Prozessintegrative Simulationen

5110.	
atum:	04.04.2011
utor:	Thomas Wimmer, Martin Fritz, Peter Reithofer
atei:	rep_vv0_11030404_tw_mf_TT2011.ppt

.. in physics we trust

П

N

© 4a technology GmbH, all rights reserved

 Datum:
 04.04.2011

 Autor:
 Thomas Wimmer, Martin Fritz, Peter Reithofer

 Datei:
 rep_vv0_11030404_tw_mf_TT2011.ppt

Seite:

PHYSICS WE TRU