

Faserverbundbauteilen unter dynamischen und zyklischen Belastungen

M. Fritz, M. Pichler (4a engineering GmbH, Traboch-A)

4a Technologietag 2011 3.-4. März 2011, Schladming

... is this predictable?

© 4a technology GmbH, all rights reserved

Seite: Datum 13.09.2010 DI Martin Fritz, DI Micheal Pichler Datei

LH₂ – inner tank suspension lowest possible heat transfer / BMW clean energy high stiffness, high strength composite solution increased performance : 250%

4a fatigue - composites

linear cumulative damage analysis failure prediction by Puck's criteria consideration of anisotropic lay-up

Resin transfer molded carbon brace

substitution of steel brace by RTM carbon brace with a carbon fiber reinforced plastic – solution 60 % weight reduction

© 4a technology GmbH, all rights reserved

 Seite:
 3

 Datum:
 13.09.2010

 Autor:
 DI Martin Fritz, DI Micheal Pichler

 Datei:
 rep_vv0_11030301_mf_TT11.ppt

LH₂ – inner tank suspension lowest possible heat transfer / BMW clean energy high stiffness, high strength composite solution increased performance : 250%

4a fatigue - composites linear cumulative damage analysis failure prediction by Puck's criteria consideration of anisotropic lay-up

Resin transfer molded carbon brace substitution of steel brace by RTM carbon brace with a carbon fiber reinforced plastic – solution 60 % weight reduction

© 4a technology GmbH, all rights reserved

Seite: 4 Datum: 13.09.2010 Autor: DI Martin Fritz, DI Micheal Pichler Datei: rep vv0 11030301 mf TT11.ppt

example: development LH2 - tank suspension

DI Martin Fritz, DI Micheal Pichler rep vv0 11030301 mf TT11.ppt

Datei

LH2 - tank suspension defining test setups

tests on bad gravel roads

multi body simulations

load	speciments	frequence	bolt angle	load cycles
kN		Hz		ca.
test1: part load/cycle curve at 77K				
6.5	3	10	3	1000
9.1	3	10	3	10000
10.1	3	10	3	50000
12.1	3	10	3	1000000
test2: reference with paralell bolts at 77K				
14.5	3	10	0	50000
test3: reference at room temperature				
14.5	3	10	0	50000
14.5	3	10	3	50000
14000 12000 10000 8000 4000 2000 0 -2000	0,5	1 1,5 Weg [mm]	2 end 12400N	25
	scriwelleric		010_12400IN	

© 4a technology GmbH, all rights reserved

DI Martin Fritz, DI Micheal Pichler Datei:

LH2 - tank suspension equipment and test setup

Autor: DI Martin Fritz, DI Micheal Pichler Datei: rep_vv0_11030301_mf_TT11.ppt PHYSICS WE TR

LH2 - tank suspension equipment and test setup

ette: 8 atum: 13.09.2010 utor: DI Martin Fritz, DI Micheal Pichler atei: rep. vv0 11030301 mf TT11.ppt

IN PHYSICS WE TRUST

DI Martin Fritz, DI Micheal Pichler rep vv0 11030301 mf TT11.ppt Datei

LH2 - tank suspension puck's law

LH2 - tank suspension modeling the fatigue-strength

Abbildung 5.8: σ_0 -N Diagramm verschiedener UD Verbunde unter schwellender Zugbelastung bei 77 K; R=0,1 **) aus [Pannkoke 92], S. 68

© 4a technology GmbH, all rights reserved

Datum: 13.09.2010 DI Martin Fritz, DI Micheal Pichler Autor Datei

Seite:

rep vv0 11030301 mf TT11.ppt

LH2 - tank suspension cyclic loading at 77K

LH2 - tank suspension prediction of load cycles

LH2 - tank suspension simulation - parallel bolt position (at 10kN)

LH2 - tank suspension S-N-curves, effect of temperature

Abbildung 5.8: σ_0 -N Diagramm verschiedener UD Verbunde unter schwellender Zugbelastung bei 77 K; R=0,1 **) aus [Pannkoke 92], S. 68

© 4a technology GmbH, all rights reserved

13.09.2010 DI Martin Fritz, DI Micheal Pichler Autor Datei

Seite: Datum

rep vv0 11030301 mf TT11.ppt

LH2 - tank suspension comparison with simulation results

rep_vv0_11030301_mf_TT11.ppt Datei

LH2 - tank suspension effect of fiber orientation (UD)

Seite: 17 Datum: 13.09.2010 Autor: DI Martin Fritz DI Mi

 Autor:
 DI Martin Fritz, DI Micheal Pichler

 Datei:
 rep_vv0_11030301_mf_TT11.ppt

N PHYSICS WE TRUS

LH2 - tank suspension effect of fiber orientation (UD) - normalized

Autor: DI Martin Fritz, DI Micheal Pichler Datei: rep_vv0_11030301_mf_TT11.ppt

Seite: Datum:

PHYSICS WE T

U S

LH2 - tank suspension effect of stress ratio (e.g. CFRP)

13.09.2010 DI Martin Fritz, DI Micheal Pichler Autor: Datei rep_vv0_11030301_mf_TT11.ppt

Datum:

LH2 - tank suspension effect of off- axis load on fatigue behaviour

Autor: DI Martin Fritz, DI Micheal Pichler Datei: rep vv0 11030301 mf TT11.ppt

Seite: Datum

W E T

TRU

LH₂ – inner tank suspension lowest possible heat transfer / BMW clean energy high stiffness, high strength composite solution increased performance : 250%

4a fatigue - composites

linear cumulative damage analysis failure prediction by Puck's criteria consideration of anisotropic lay-up

Resin transfer molded carbon brace substitution of steel brace by RTM carbon brace with a carbon fiber reinforced plastic – solution 60 % weight reduction

© 4a technology GmbH, all rights reserved

Datum: 13.09.2010 Autor: DI Martin Fritz, DI Micheal Pichler Datei: rep_vv0_11030301_mf_TT11.ppt

Seite:

LH2 - tank suspension realistic loads – e.g. bad gravel road

Movie driverposition

Autor: DI Martin Fritz, DI Micheal Pichler Datei: rep vv0 11030301 mf TT11.ppt

Seite: Datum:

R U

VX - Brace complete FE-model (super-element)

Use of a super-element (vehicle) for effective FE analysis – with a detailed modeling of the brace

Unit-loads on each interface node in each direction

Effect of unit-load on elementstress is known

Superposition for each timestep to get the complete stress-state for each element

Laminate-theory for each element and calculation of Failure (Puck's law)

 Seite:
 23

 Datum:
 13.09.2010

 Autor:
 DI Martin Fritz, DI Micheal Pichler

 Datei:
 rep_vv0_11030301_mf_TT11.ppt

VX - Brace damage accumulation

 Assume that, during the service life, we have 500 loadings of type 1 (defined by mid-value and magnitude), 1000 loadings of type 2 and 10000 loadings of type 3

The Palmgren – Miner rule states that failure occurs when

$$\sum_{i=1}^{l} \frac{n_i}{N_i} = 1$$

where n_i is the number of applied load cycles of type *i*, and N_i is the pertinent fatigue life

damage accumulation

$$D = \sum \frac{n_i}{N_i}$$

Original-Miner

$$S_a > S_{aD} : N = N_D \cdot \left(\frac{S_a}{S_{aD}}\right)^{-k}$$

elementare Miner-Rule by Palmgren

$$S_a \leq S_{aD} : N = N_D \cdot \left(\frac{S_a}{S_{aD}}\right)^{-k}$$

Miner-Rule modifized by Haibach

$$S_a \le S_{aD} : N = N_D \cdot \left(\frac{S_a}{S_{aD}}\right)^{-(2k-1)} \quad S_a > S_{aD} : N = N_D \cdot \left(\frac{S_a}{S_{aD}}\right)^{-k}$$

© 4a technology GmbH, all rights reserved

 Datum:
 13.09.2010

 Autor:
 DI Martin Fritz, DI Micheal Pichler

 Datei:
 rep_vv0_11030301_mf_TT11.ppt

Seite:

, нузіс з

US

VX - Brace a critical Element - loadcase R1

VX - Brace parameters for component tests

Seite: 26 Datum: 13.09.2010 Autor: DI Martin Fritz, DI Micheal Pichler Datei: rep vv0 11030301 mf TT11.ppt

- Einfluss auf Lebendauer
 - Faserorientierung kann durch normieren eliminiert werden
 - Temperatur und R-Verhältnis beeinflussen Lebensdauer
- Lastumlagerungsvorgänge haben Vorschädigungen und Kerben geringeren Einfluss im Vergleich zu metallische Werkstoffen
- Off-axis Fatigue von UD-Verbunde deutlich unterschiedlich zu Gewebe-Verbunde
- Betriebsfestigkeitsberechnung
 - Superelement mit Einheitslasten
 - Rainflowanalyse der Faserlängs- und Querspannungen
 - Lineare Schadenakkumulation Puck's Versagenshypothese

Nicht untersucht wurden Energiedissipation, Lastzeitfolge, Alterung

Vielen Dank für Ihre Aufmerksamkeit!

© 4a technology GmbH, all rights reserved

 Seite:
 28

 Datum:
 13.09.2010

 Autor:
 DI Martin Fritz, DI Micheal Pichler

 Datei:
 rep_vv0_11030301_mf_TT11.ppt

U 5