

Optimization and Robustness Studies with LS-OPT - New Developments in V4.1

Heiner Müllerschön, Marko Thiele, Katharina Witowski

contact: hm@dynamore.de

Acknowledgements:

M. van den Hove, B. Mlekusch (AUDI AG) M. Feuerstein (Alcan Itd.) Prof. K. Roll (Daimler AG)

> DYNAmore GmbH Germany http://www.dynamore.de

Overview

- Introduction to LS-OPT
- Application Examples of Automotive Industry
 - Multi-Load Case Optimization of an Adaptive Restraint System
 - Multi-Objective Optimization of a Crash Management System
 - Reliability Optimization of a Metal Forming Process
- New Features in Version 4.1

Introduction / Features

About LS-OPT

- LS-OPT can be linked to any simulation code stand alone optimization software, but perfect suitable with LS-DYNA
- Two main products LS-OPT and LS-OPT/Topology
- Current production version is LS-OPT 4.0 Version 4.1 beta is available
- LS-OPT Support web page -> www.lsoptsupport.com
 - Download of Executables
 - Tutorials
 - HowTos / FAQs
 - Documents

....

Introduction / Features

LS-OPT – Overview Methodologies

- Response Surface Methodologies
- Meta-Models
 - Polynomials
 - Radial Basis Functions
 - Neural Nets (FFNN)

- Design of Experiments (DOE) Studies
- Shape Optimization Interfaces to ANSA, Hypermesh,...
- Parameter/System Identification Module

Introduction / Features

Parameter Identification with Test Curves

<section-header> Introduction / Features Introduction LS-OPT Application Examples Multi-Objective Optimization Beliability Based Optimization LS-OPT V4.1

Parameter Identification with Test Curves

6

Introduction Introduction LS-OPT Application Examples Multi-Load Case Optimization Multi-Objective Optimization Beliability Based Optimization US-OPT V4.1

LS-OPT – Overview Methodologies

- Genetic Algorithm (MOGA->NSGA-II) for Multi Objective Optimization (Pareto Frontiers)
- Visualization Strategies for Pareto Optimal Data
 - o Parallel Coordinate Plots
 - o Hyper-Radial Visualization
 - Self Organizing Maps
- Stochastic/Probabilistic Analysis
- Reliability based Design
 Optimization (RBDO and RDO)
- Visualization of Stochastic Results
 - Fringe of statistic results on the FE-Model

Load Cases / Model

- Adaptive Restraint System
 - Trigger time for seatbelt, airbag and steering column can be specified individually for different load cases
- Four Front-Crash Load Cases (FMVSS 208)

Dummy	56 km/h – belted	40 km/h – not belted
Hybrid III 5th Female	H305a (ctive)	H305p(assive)
Hybrid III 50th Male	H350a(ctive)	H350p(assive)

Objective

Fulfill injury criteria of dummies for all load cases (starting design violates several criteria)

Design Variables

Adaptive Seat Belt System (3 Variables)

	H305a 5%-dummy, belted	H305p 5%-dummy, not belted	H350a 50%-dummy, belted	H350p 50%-dummy, not belted
Upper Force Level	GUR_FOR1		GUR_FOR1	
Trigger Time	GUR_ENDE05a		GUR_ENDE50a	

Application Examples
 Multi-Load Case Optimization
 Multi-Objective Optimization
 Reliability Based Optimization
 LS-OPT V4.1

Introduction LS-OPT

Design Variables

Adaptive Airbag Deployment (6 Variables)

	H305a 5%-dummy, belted	H305p 5%-dummy, not belted	H350a 50%-dummy, belted	H350p 50%-dummy, not belted
Area Venthole1	FAB_VENT	FAB_VENT	FAB_VENT	FAB_VENT
Area Venthole2	SBA_VENT	SBA_VENT	SBA_VENT	SBA_VENT
Trigger Time	FAB_ADT1_05a	FAB_ADT1_05p	FAB_ADT1_50a	FAB_ADT1_50p

Introduction LS-OPT

LS-OPT V4.1

Application Examples

Multi-Load Case Optimization

Multi-Objective Optimization
 Reliability Based Optimization

Optimization and Robustness Studies with LS-OPT - New Developments in V4.1 – 4a Impetus User Meeting 2010

Auð

Design Variables

Adaptive Steering Column (5 Variables)

	H305a 5%-dummy, belted	H305p 5%-dummy, not belted	H350a 50%-dummy, belted	H350p 50%-dummy, not belted	
Force Level StCo	LKS_SKAL	LKS_SKAL	LKS_SKAL	LKS_SKAL	
Trigger Time	LKS_DOWN05a	LKS_DOWN50a	LKS_DOWN05p	LKS_DOWN50p	

Introduction LS-OPT

LS-OPT V4.1

Application Examples

Multi-Load Case Optimization

Multi-Objective Optimization
 Reliability Based Optimization

Optimization and Robustness Studies with LS-OPT - New Developments in V4.1 – 4a Impetus User Meeting 2010

Aud

A result which meets all requirements is gained in 8 iterations, each with 34 shots

Introduction LS-OPT

Application Examples

Problem Description

Load Case 2: RCAR test

→3 Objectives

Application of Morphing for Shape Optimization using ANSA

Pareto Optimal Solutions

Optimal solutions considering all objectives

→ FE-Simulation of Starting Design

- Consideration of two response criteria: THICK_MIN>0.5mm, FLD<0</p>
- Result is feasible, but fairly close to infeasible region

Considered Uncertainties – Material Properties

Variable	Description	Distribution		
_	Quift Loui Deverseter Viold Strein	uniform	lower	upper
0	Swiit Law Parameter – Heid Stram	unionii	120 MPa	160 MPa
K	Swift Law Paramotor	uniform	lower	upper
	Swiit Law Farainetei	unioni	440 MPa	660 MPa
Ν	Swift Low Doromotor	uniform	lower	upper
	Swiit Law Farainetei		0.23	0.3
r0	Lankford Anigotropy Coofficient 0°	uniform	lower	upper
	Lankioru Anisotropy Coenicient o	umorm	2.0	2.5
r45	Lankford Anigotropy Coofficient 45°	uniform	lower	upper
	Lankiord Anisotropy Coencient 45	unioni	1.4	2.0
r90	Louistand Aniastrony Ossettisisnet 000	uniform	lower	upper
	Lankioru Anisotropy Coemcient 90°	unioni	2.5	3.2

Considered Uncertainties – Process Parameters

Variable	Description	Distribution		
		type	lower	upper
μ	Friction – Punch/Blank	uniform	0.05	0.1
			Mean	Std
BF	Binder Force	normal	1910 kN	50 kN
DBF1	Draw Bead Force #1	normal	70 kN	5 kN
DBF2	Draw Bead Force #2	normal	20 kN	5 kN
DBF3	Draw Bead Force #3	normal	80 kN	5 kN
DBF4	Draw Bead Force #4	normal	90 kN	5 kN
DBF5	Draw Bead Force #5	normal	100 kN	5 kN
DBF6	Draw Bead Force #6	normal	140 kN	5 kN
Pert1	Perturbation amplitude in rolling direction	normal	0	0.005mm
Pert2	Perturbation amplitude perpendicular to rolling direction	normal	0	0.005mm

Perturbation of blank thickness

Sheet thickness variation due to rolling process

Conclusions after Monte Carlo Simulations

- Considering the chosen baseline design, the FE-simulation is very sensitive regarding the assumed variations of the uncertain process and material parameters
- The failure probability is very high and the baseline configuration must be declared as non-robust

Next Step

- Investigation of reliability based design optimization
- Objective is to minimize the failure probability

Reliability Based Design Optimization (RBDO)

Introduction of "control" and "noise" variables

"control variables" drive optimization process

"noise variables" for consideration of uncertainties

Variable	Description	Distribution "no se variable"			Range "control variable"		
		Туре	rièan	std	min	max	
DBF1	Draw Bead Force #1	normen	70	5 kN	20 kN	200 kN	
DBF2	Draw Bead Force #2,	R rmal	20	5 kN	20 kN	200 kN	
DBF3	Draw Bead Force #3	normal	80	5 kN	50 kN	120 kN	
DBF4	Draw Bead Ecroe #4	normal	90	5 kN	60 kN	120 kN	
DBF5	Draw Bead Porce #5	normal	100	5 kN	70 kN	130 kN	
DBF6	Draw Bead Force #6	normal	140	5 kN	20 kN	200 kN	
FORCFN	Binder Force	normal	1910	50 kN	1400 kN	2400 kN	

All other variables remain noise variables

Reliability Based Design Optimization (RBDO)

Optimization history of probability of exceeding bound for THICK_MIN

Visualization of Statistical Results on the FE-Model with LS-OPT

Scatter of minumum sheet thickness due to considered uncertainties based on 160 simulations

- New Features in LS-OPT V4.1
- Frequency/Mode Tracking
 - NASTRAN Frequency with Mode tracking added
 - Previously existed only for LS-DYNA

- Industry tested in an automotive multidisciplinary setting
- Additional Injury Criteria
 - VC (Viscous Criterion)
 - Chest Compression
 - A3ms (Acceleration level for 3ms)
 - More added in V4.2
- Additional Result Interfaces for LS-DYNA
 - SPH: Strains, Stresses
 - Acoustics binary database: DBBEMAC
 - LS-DYNA *CASE supported

Optimization and Robustness Studies with LS-OPT - New Developments in V4.1 - 4a Impetus User Meeting 2010

chara

E+03

.85E+03

1.7E+03

1.55E+03 1.4E+03

1.25E+03 💆

.1E+03

950

- New Features in LS-OPT V4.1
- History Curves
 - View of histories of all design points
 - Color selection
 - Feasibility
 - Iteration
 - Variables, Responses, …

4E+04

3.5E+04-

3E+04-

2.5E+04 -1_vs_d1

2E+04

1.5E+04

1E+04-

5E+03-

New Features in LS-OPT V4.1

Computed history curves vs. Target curves

Introduction LS-OPT Application Examples Multi-Load Case Optimization Multi-Objective Optimization Reliability Based Optimization LS-OPT V4.1

New Features in LS-OPT V4.1

"Predicted" Histories

New Features in LS-OPT V4.1

- Multiple Meta Model Plot
 - Compare meta models of different responses even for different load cases
- Global (nonlinear) Sensitivity Analysis
 - Evaluation of Sobol Indices

