

4a Technologietag – Kunststoffe Prüfen und Simulieren 11.-12. März 2010

Virtuelle Lebensdauerabschätzung von Kunststoffen

Ch. Guster ¹, G. Pinter ², W. Eichlseder ¹

1.... Lehrstuhl für Allgemeinen Maschinenbau, Montanuniversität Leoben, A2.... Institut für Werkstoffkunde und Prüfung der Kunststoffe, Montanuniversität Leoben, A

Christoph.Guster@unileoben.ac.at

© Alle Rechte bei Montanuniversität Leoben, Institut für Allgemeinen Maschinenbau, auch für den Fall von Schutzrechtsanmeldungen. Jede Verfügungsbefugnis, wie Kopier- und Weitergaberechte, bei uns.

Inhalt

1. Motivation und Zielsetzung

2. Lebensdauerabschätzung auf Basis lokaler Größen

- Nötige Erweiterung für kgfv Kunststoffe
- Wesentliche Einflüsse auf die lokale Wöhlerlinie

3. Experimentelles

- Werkstoffe und Prüfkörper
- Faserorientierung

4. Ergebnisse und Modellableitungen

- Mittelspannungseinfluss ⇒ Haigh-Diagramm
- Werkstoffanisotropie ⇒ neuartiges Modell in FEMFAT

5. Geschlossene Simulationskette

- Validierung am "EMS-Ringschlüssel"
- 6. Anwendungsbeispiel
- 7. Zusammenfassung

Polymere: Motivation und Zielsetzung

Trend:

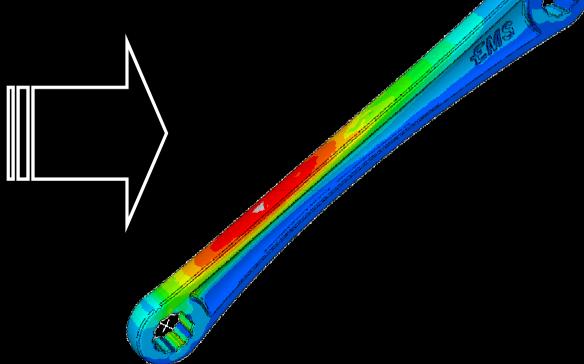
- Zunehmende Substituierung von Metallen durch kurzglasfaserverstärkte Materialien
 - Leichtbau: Vorteil der hohen spezifischen Festigkeit
 - Endformnahe Fertigung: Reduzierung von Fertigungszeiten und Produktionskosten

Erforderlich:

- Kenntnis der zyklischen Materialdaten
- Angemessene Auslegungsmethoden zur
 - Reduzierung von Versuchs- und Entwicklungszeiten
 - besseren Nutzung des Leichtbaupotentials
 - Erweiterung des Anwendungsgebiets von faserverstärkten Polymeren

Ziel:

Durchgängige Simulationskette



Leitsatz

Von der Probe zum Bauteil: In Simulation und Versuch

Inhalt

1. Motivation und Zielsetzung

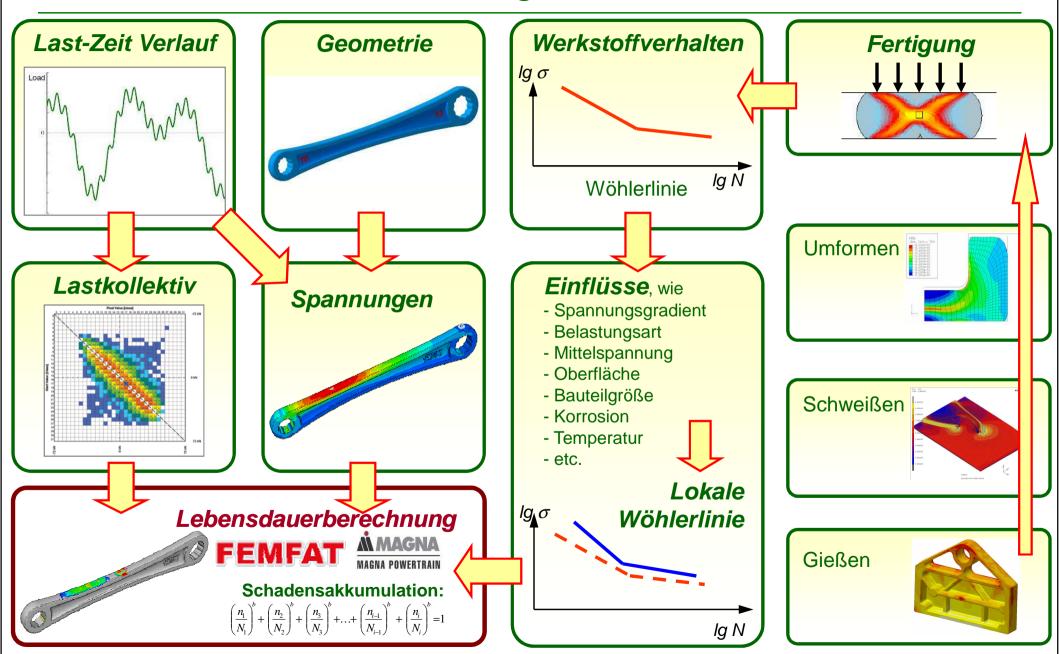
2. Lebensdauerabschätzung auf Basis lokaler Größen

- Nötige Erweiterung für kgfv Kunststoffe
- Wesentliche Einflüsse auf die lokale Wöhlerlinie

3. Experimentelles

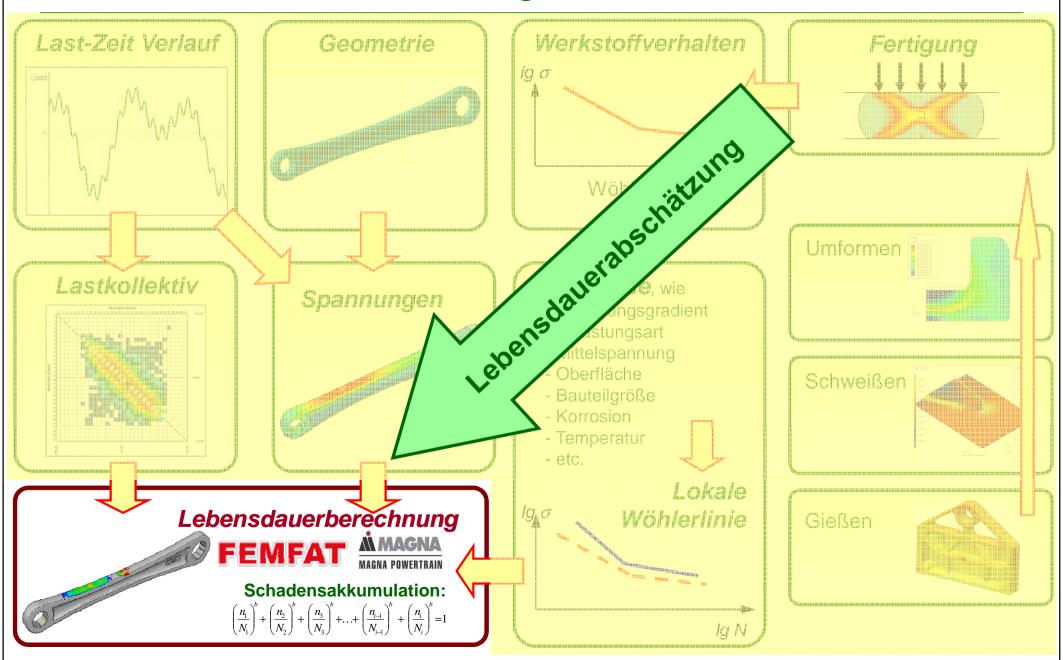
- Werkstoffe und Prüfkörper
- Faserorientierung

4. Ergebnisse und Modellableitungen

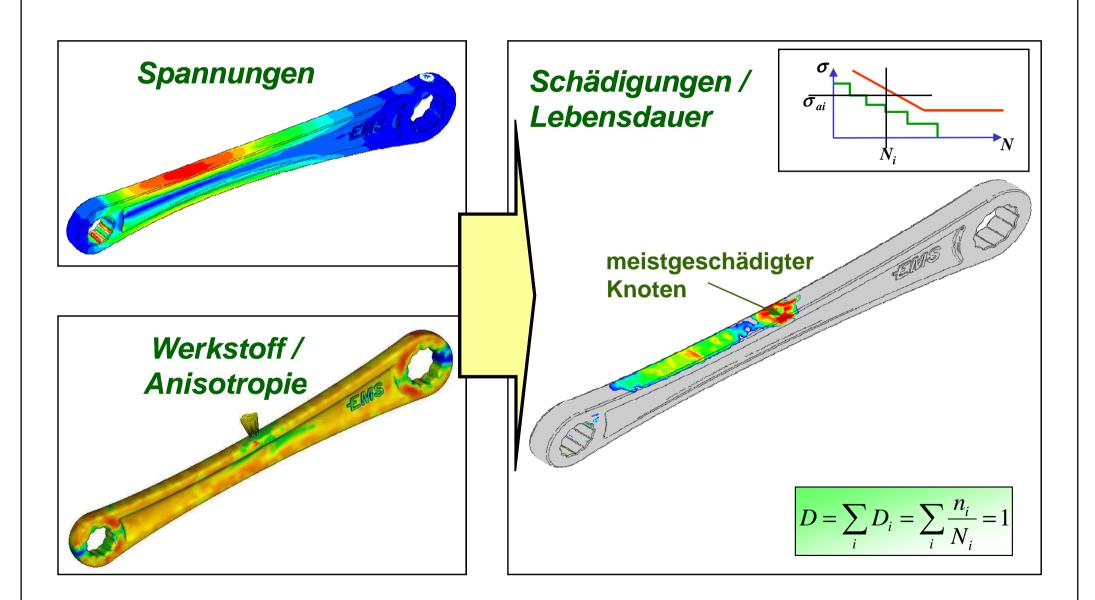

- Mittelspannungseinfluss ⇒ Haigh-Diagramm
- Werkstoffanisotropie ⇒ neuartiges Modell in FEMFAT

5. Geschlossene Simulationskette

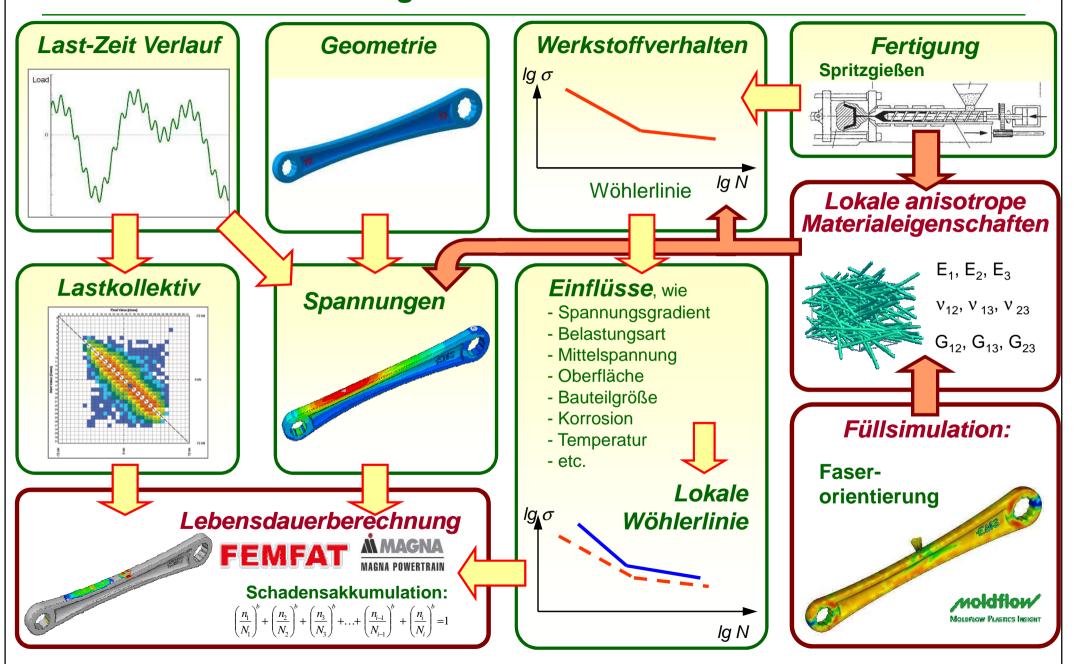
- Validierung am "EMS-Ringschlüssel"
- 6. Anwendungsbeispiel
- 7. Zusammenfassung



Lebensdauerabschätzung auf Basis lokaler Größen

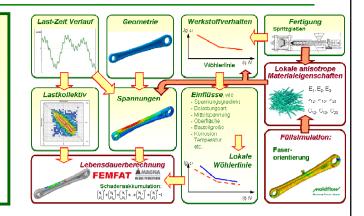


Lebensdauerabschätzung auf Basis lokaler Größen



Lebensdaueranalyse von Bauteilen - Bsp. kgfv Kunststoffteil

Lebensdauerabschätzung auf Basis lokaler Größen - ERWEITERUNG


Einflussparameter auf die lokale Wöhlerlinie

Beanspruchung

- Belastungsart
- Mittelspannung
- LCF, plast. Verformung
- Lastreihenfolge
- Tribologie
- > Thermomech. Ermüdung
- > Kriechen, Relaxation
- High Cycle Fatigue (HCF)
- Belastungsfrequenz

Fertigung

- Oberflächenrauhigkeit
- Oberflächenverfestigung
- > Technologische Einflüsse
- Eigenspannungen

Werkstoff

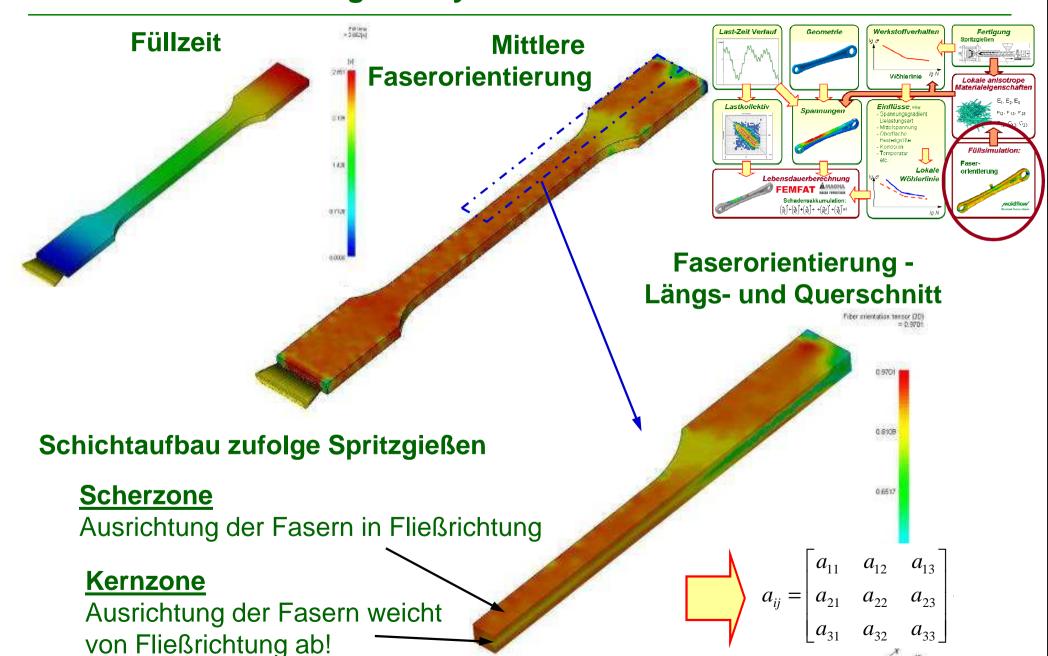
- > Art
- Alterung
- > Feuchteaufnahme
- Faserkonzentration
- Faserorientierung
- Matrix

Werkstoffwöhlerlinie

Lokale Wöhlerlinie

log N

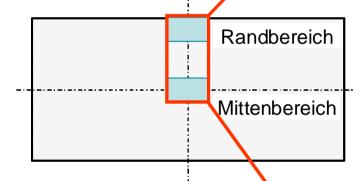
Gestalt


- Form
- Kerben, Stützwirkung
- Abmessungen

Umgebung

- Medieneinflüsse
- Temperatur
 - Feuchte

Faserorientierung in Polymerbauteilen: 3D-Füllsimulation



Anisotropes Materialverhalten - Faserorientierung

Aus Einzelaufnahmen zusammengesetztes Schliffbild des Normprüfkörpers aus PA 6T/6I-GF50

Quelle:

Ch. Guster, : "Ansätze zur Lebensdauerberechnung von kurzglasfaserverstärkten Polymeren", Dissertation, Lehrstuhl für Allgemeinen Maschinenbau, Montanuniversität Leoben (A), 2009

Mittenbereich

Inhalt

- 1. Motivation und Zielsetzung
- 2. Lebensdauerabschätzung auf Basis lokaler Größen
 - Nötige Erweiterung für kgfv Kunststoffe
 - Wesentliche Einflüsse auf die lokale Wöhlerlinie

3. Experimentelles

- Werkstoffe und Prüfkörper
- Faserorientierung
- 4. Ergebnisse und Modellableitungen
 - Mittelspannungseinfluss ⇒ Haigh-Diagramm
 - Werkstoffanisotropie ⇒ neuartiges Modell in FEMFAT
- 5. Geschlossene Simulationskette
 - Validierung am "EMS-Ringschlüssel"
- 6. Anwendungsbeispiel
- 7. Zusammenfassung

Experimentelles

- Servohydraulische Prüfmaschinen (Zug/Druck)
- Elektromechanische Prüfmaschinen (Umlaufbiegung)
- Quasistatische und zyklische Versuche
- Abbruchkriterium: N=5x10⁶ Zyklen (bzw. N=10⁶)
- Zumindest 3 Versuche je Spannungsniveau
- Unterschiedliche Prüfkörpergeometrien
- Ermittlung einer geeigneten Prüffrequenz im Vorfeld (hysteretische Erwärmung)
- Werkstoff- bzw. Testparameter:
 - Faserhauptorientierung
 - Polymermatrix
 - Beanspruchungsart
 - Spannungsverhältnis
 - Temperatur
 - Feuchtigkeit
 - krit. Medium
 - Bindenaht
 - geometrische Kerben

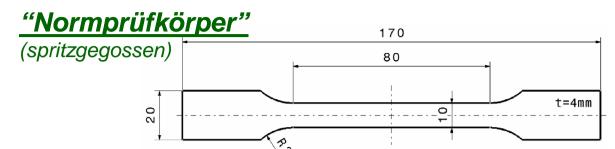
EXPERIMENTELLES: Werkstoffe und Prüfkörpergeometrien

Matrix = Duroplast:

PF-GF30+MX30

Phenol-Formaldehyd Harz 30 Gew.-% Kurzglasfasern 30 Gew.-% Mineralstoff

Matrix = Thermoplast:


PA 6T/6I-GF40+MX25

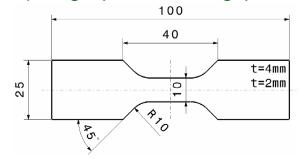
Partial-aromatisches Polyamid (PPA Polyphtalamid)
40 Gew.-% Kurzglasfasern
25 Gew.-% Mineralstoff

PA 6T/6I-GF450

Partial-aromatisches Polyamid (PPA Polyphtalamid) 50 Gew.-% Kurzglasfasern

Faserlängen: 150 – 300 μm Faserdurchmesser: 10 – 15 μm

- > PF-GF30+MX30
- > PA 6T/6I-GF40+MX25
- PA 6T/6I-GF50


Verwendung:

- Grundcharakterisierung

<u>"Kurzprüfkörper"</u>

(aus gespritzten bzw. gepressten Platten gefräst)

- > PF-GF30+MX30
- PA 6T/6I-GF40+MX25

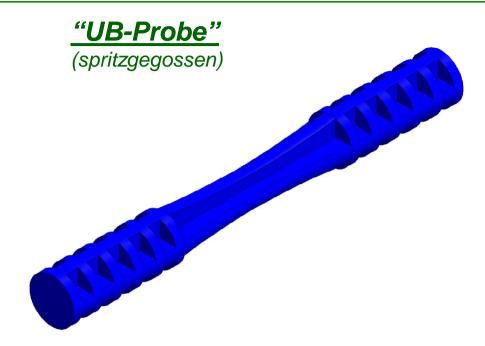
Verwendung:

- Faserorientierung
- R-Verhältnis

EXPERIMENTELLES: Werkstoffe und Prüfkörper

4a Technologietag 2010

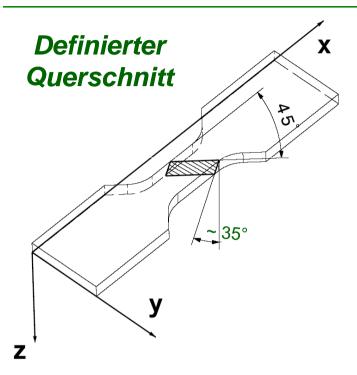
"Biax-Probe"


(spritzgegossen)

PA 6T/6I-GF50

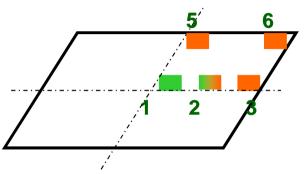
Verwendung:

- Faserorientierung
- R-Verhältnis
- Temperatur
- Feuchtigkeit
- krit. Medium
- Bindenaht


> PA 6T/6I-GF50

Verwendung:

- Faserorientierung(2 und 4mm Stegbreite)
- Beanspruchungsart
- Bindenaht
- geometrische Kerben(6 Geometrievarianten)


EXPERIMENTELLES: Faserorientierung - Bildanalyse

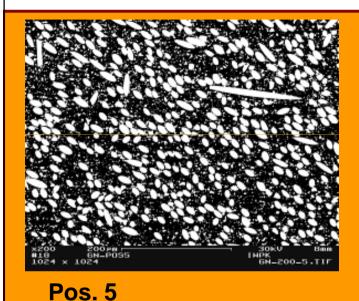
Prozedur:

- Entnahme aus Prüfkörpern
- Einbettung in Epoxidharz
- Schleifen und Polieren der Oberfläche
- Besputtern (Gold, Kohlenstoff)
- Untersuchung mittels REM (backscatter mode)

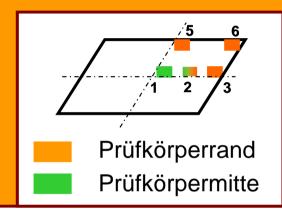
Querschnitt mit Positionen zur REM-Bildaufnahme

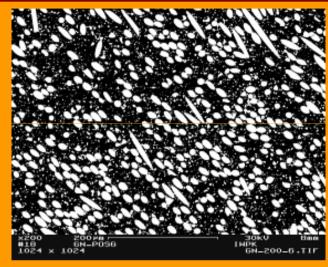
Durchgeführt mit Norm- und Kurzprüfkörpern (4mm Dicke, Hauptorientierungsrichtung längs) des Werkstoffes PA6T/6I-GF4040+MX25 zur quantitativen Analyse der Faserorientierung.

Bildanalyse



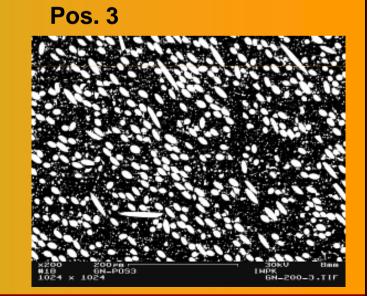
Orientierungstensor


$$a^{2} = a_{ij} = \begin{bmatrix} a_{xx} & a_{xy} & a_{xz} \\ & a_{yy} & a_{yz} \\ symm. & a_{zz} \end{bmatrix}$$



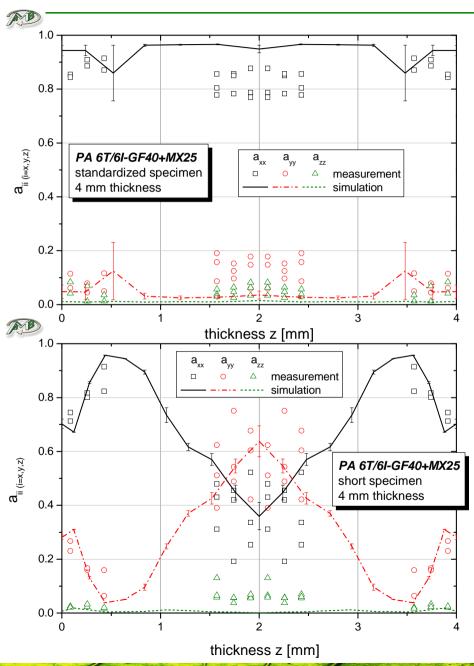
EXPERIMENTELLES: Bildanalyse - REM-Aufnahmen

PA 6T/6I-GF40+MX25 Normprüfkörper

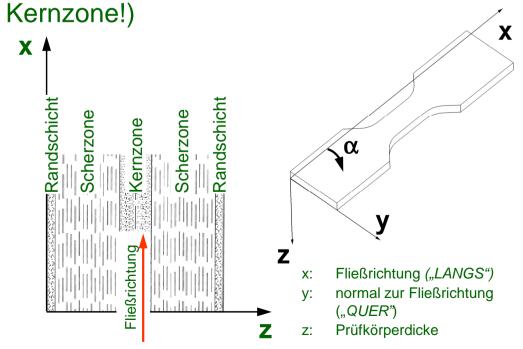


Montanuniversität Leoben

Pos. 6


Pos. 1

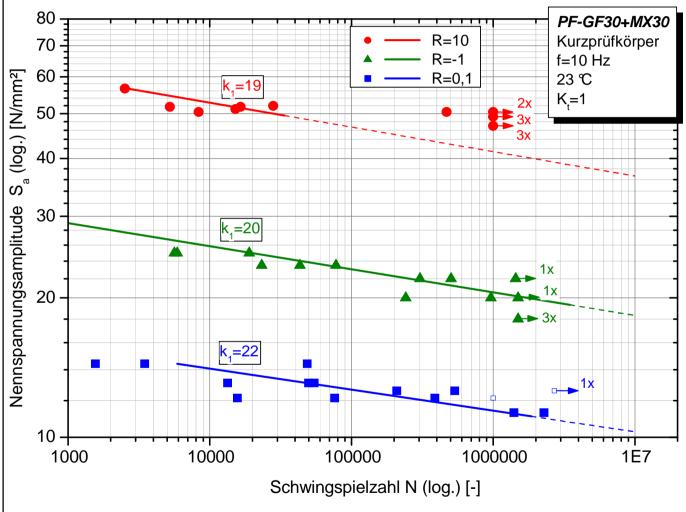
Pos. 2



ERGEBNISSE: Faserorientierung

Gegenüberstellung Simulation - Messung

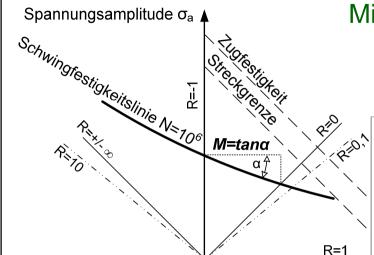
- Im Allgemeinen gute Übereinstimmung
- Optimistischere Werte aus Simulation
- Simulation und Messung zeigen beim Kurzprüfkörper eine ausgeprägte Scherzone
- Normprüfkörper zufolge geometrischer Verhältnisse wesentlich höhere mittlere Faserorientierung (keine ausgeprägte


Inhalt

- 1. Motivation und Zielsetzung
- 2. Lebensdauerabschätzung auf Basis lokaler Größen
 - Nötige Erweiterung für kgfv Kunststoffe
 - Wesentliche Einflüsse auf die lokale Wöhlerlinie
- 3. Experimentelles
 - Werkstoffe und Prüfkörper
 - Faserorientierung
- 4. Ergebnisse und Modellableitungen
 - Mittelspannungseinfluss ⇒ Haigh-Diagramm
 - Werkstoffanisotropie ⇒ neuartiges Modell in FEMFAT
- 5. Geschlossene Simulationskette
 - Validierung am "EMS-Ringschlüssel"
- 6. Anwendungsbeispiel
- 7. Zusammenfassung

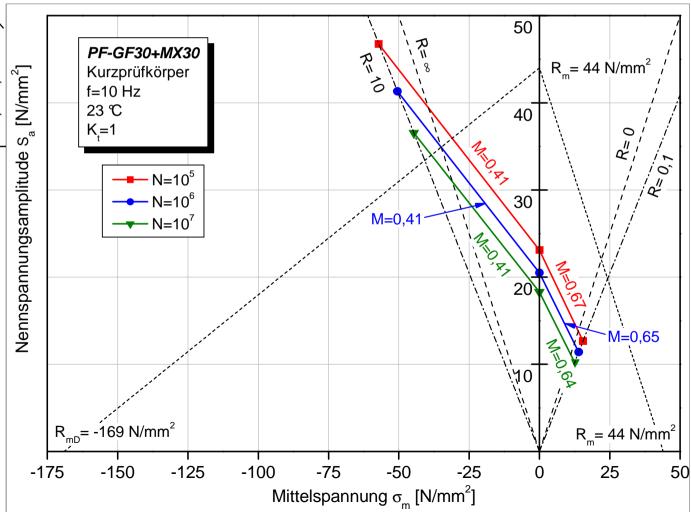
ERGEBNISSE: Einstufige Wöhlerversuche

Einfluss des Spannungsverhältnisses auf das Schwingfestigkeitsverhalten


Quelle:

Ch. Guster, W. Balika, W. Eichlseder, R. W. Lang: "Betriebsfestigkeitsuntersuchungen von faserverstärkten Kunststoffen", 1. Leobener Betriebsfestigkeitstage, Lehrstuhl für Allgemeinen Maschinenbau, Montanuniversität Leoben, 8.-10.3.2006, Planneralm (A), ISBN 3-902544-00-7.

- keine ausgeprägte Dauerfestigkeit im untersuchten Lastwechselbereich
- Neigungen k unterscheiden sich nur unwesentlich
- sehr flacher Verlauf der Zeitfestigkeitslinien
- höchste ertragbare
 Nennspannungsamplituden
 bei R=10, niedrigste bei
 R=0,1
- Lineare Extrapolation (Miner Elementar) ⇒ gute Näherung für R=0,1 und R=-1
- Lineare Extrapolation bei R=10 ⇒ äußerst konservative Näherung



MODELLABLEITUNG: Haigh-Diagramm

Mittelspannungsempfindlichkeit:

$$M = \frac{\sigma_a(R=-1) - \sigma_a(R=0)}{\sigma_m(R=0)} = \frac{\sigma_a(R=-1)}{\sigma_a(R=0)} - 1$$


Quelle:

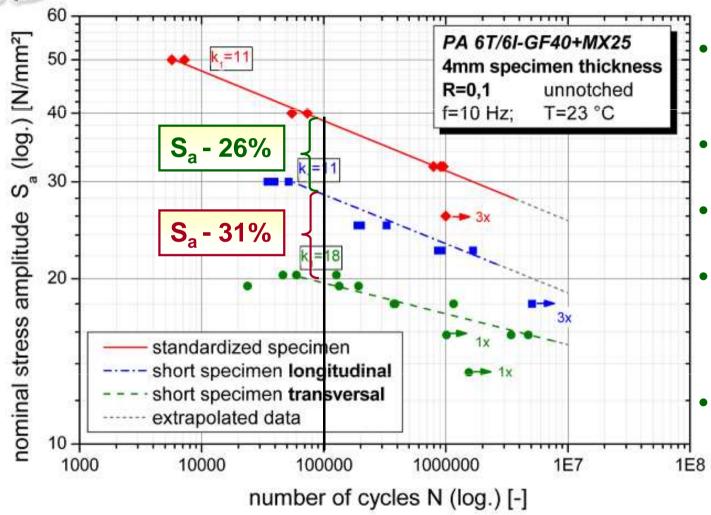
Ch. Guster, W. Balika, W. Eichlseder, R. W. Lang: "Betriebsfestigkeitsuntersuchungen von faserverstärkten Kunststoffen", 1. Leobener Betriebsfestigkeitstage, Lehrstuhl für Allgemeinen Maschinenbau, Montanuniversität Leoben, 8.-10.3.2006, Planneralm (A), ISBN 3-902544-00-7.

ERGEBNSSE: Quasistatische Zugversuche

Einfluss der Faserorientierung auf die monotonen Materialkennwerte

- keine ausgeprägte Fließgrenze
- Versagen ohne sichtbare Einschnürung oder plastische Deformation
- E-Modul und R_m steigen mit steigender mittlerer Faserorientierung
- spiegelt den Einfluss der Werkstoffanisotropie wider

Quelle:


Ch. Guster, G. Pinter, W. Balika, W. Eichlseder, R. W. Lang: "Fiber orientation and fatigue behavior of a short glass-fiber reinforced partial aromatic polyamide", 2nd Fatigue Symposium Leoben, 23.-24.04.2008

Prüfkörper	R _m [MPa]	E [MPa]	ε [%]
4mm Normprüfkörper	173	17800	1,35
4mm Kurzprüfkörper LÄNGS	115	13300	1
4mm Kurprüfkörper QUER	82	11500	0,78

ERGEBNISSE: Einstufige Wöhlerversuche

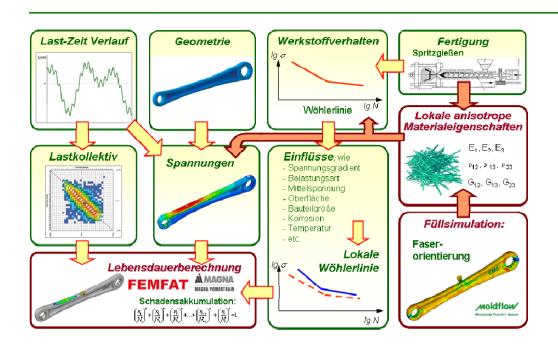
- Keine ausgeprägte
 Dauerfestigkeit ermittelt
 (siehe ebenso Literatur)
- Geringe statistische
 Streuung der Messpunkte
- Neigungen k unterscheiden sich nur unwesentlich
- Höchste ertragbare
 Nennspannungsamplituden
 S_a beim Normprüfkörper
 (hohe Faserorientierung)
- Ergebnisse der Wöhlerversuche spiegeln simulierte mittlere Faserorientierung wider

Quelle:

Ch. Guster, G. Pinter, W. Balika, W. Eichlseder, R. W. Lang: "Fiber orientation and fatigue behavior of a short glass-fiber reinforced partial aromatic polyamide",

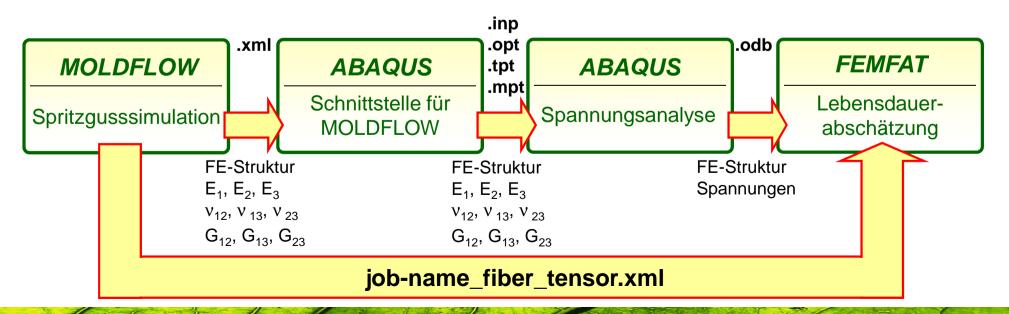
2nd Fatigue Symposium Leoben, 23.-24.04.2008

S_{a Normpr.} > S_{a Kurzpr. 4 mm LÄNGS} > S_{a Kurzpr. 4 mm QUER}

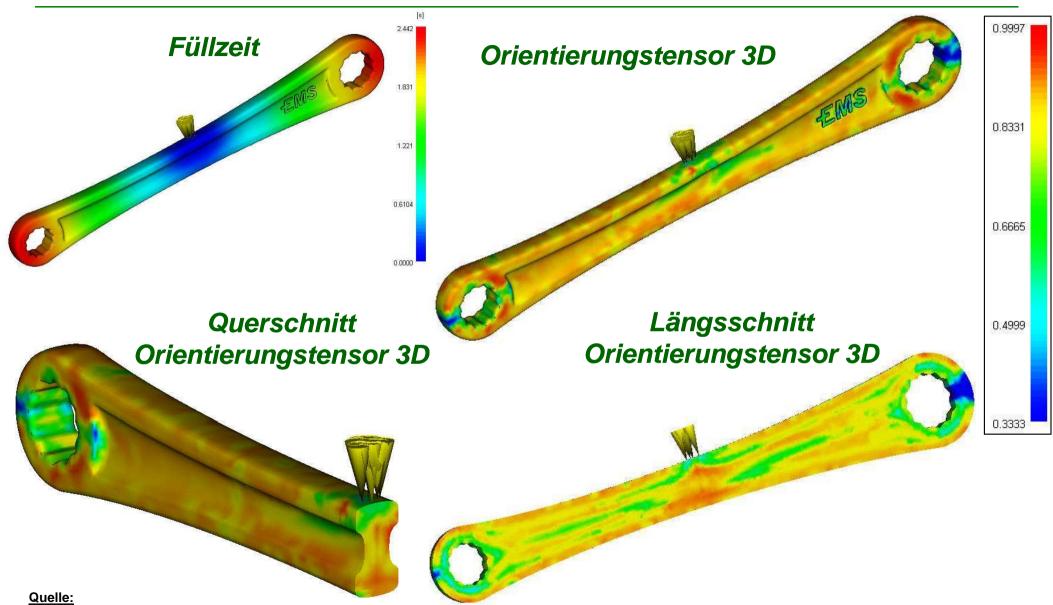


Inhalt

- 1. Motivation und Zielsetzung
- 2. Lebensdauerabschätzung auf Basis lokaler Größen
 - Nötige Erweiterung für kgfv Kunststoffe
 - Wesentliche Einflüsse auf die lokale Wöhlerlinie
- 3. Experimentelles
 - Werkstoffe und Prüfkörper
 - Faserorientierung
- 4. Ergebnisse und Modellableitungen
 - Mittelspannungseinfluss ⇒ Haigh-Diagramm
 - Werkstoffanisotropie ⇒ neuartiges Modell in FEMFAT
- 5. Geschlossene Simulationskette
 - Validierung am "EMS-Ringschlüssel"
- 6. Anwendungsbeispiel
- 7. Zusammenfassung



Geschlossene Simulationskette


Quelle:

Unger B., Fleischer H., Guster Ch., Pinter G. (2008):
"Lebensdauerberechnung für Kunststoffkomponenten", DVM Tag 2008
Leichtbaustrategien - Ein wesentlicher Beitrag zur Klimadebatte,
23.-25.4.2008, Berlin (D), DVM Bericht 675, pp. 39 – 51.

VALIDIERUNG: Füllsimulation EMS-Ringschlüssel

Guster Ch., Pinter G., Fleischer H., Lang R.W., Eichlseder W. (2009): "Betriebsfeste Dimensionierung von faserverstärkten Kunststoffkomponenten - eine durchgängig Simulationskette von der Spritzgußsimulation zur Schädigungsrechnung" IKVFachtagung: Kunststoffgerecht simulieren - Auslegung von Spritzgussbauteilen mit CAE, IKV der RWTH Aachen, 19.-20.3.2009, Aachen (D).

VALIDIERUNG: FE-Spannungsberechnung - EMS-Ringschlüssel

Bauteilversuch Kragarmbiegung

F

FE-Modell: SW10 fixiert Anspritzpunkt

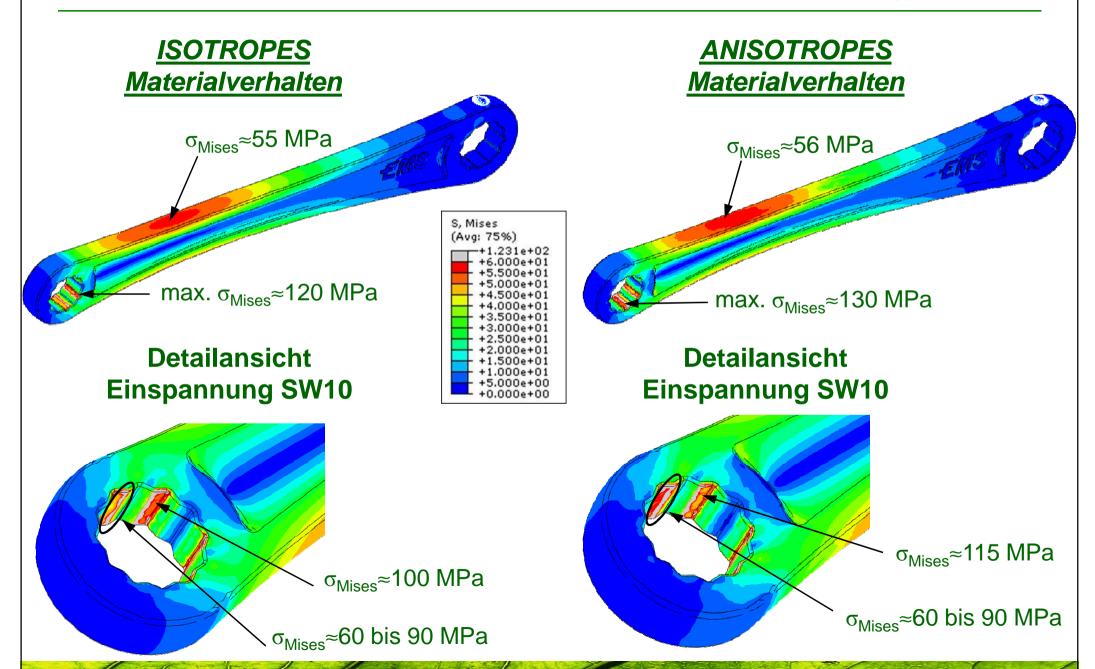
a=140 mm

Elementtyp: Tettraeder-Elemente, C3D10

quadr. Ansatzfunktion

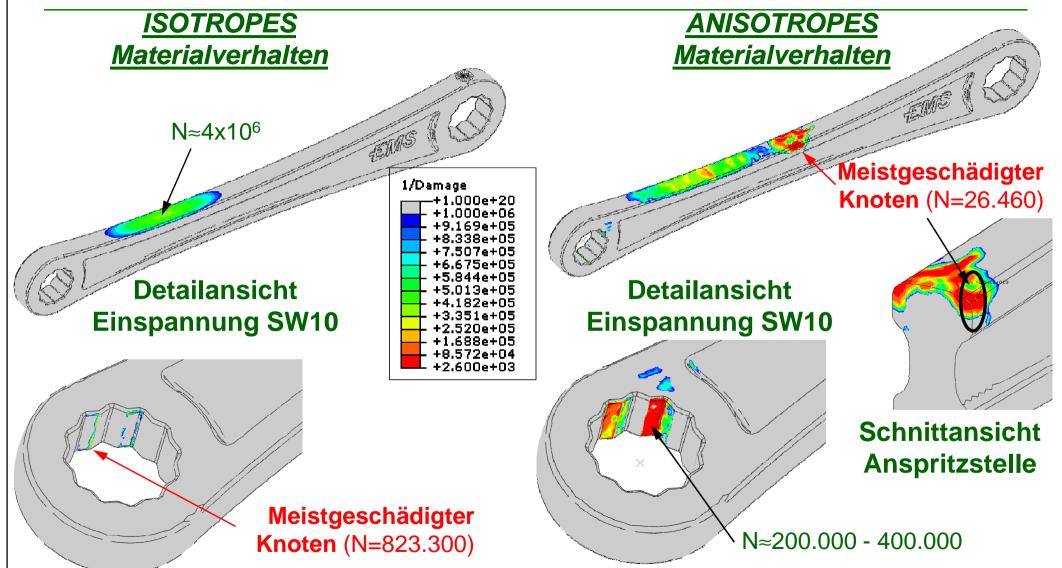
Materialdefinition: *Isotrop*: E=17.500 MPa, v=0,3

Anisotrop: Moldflow


SW13

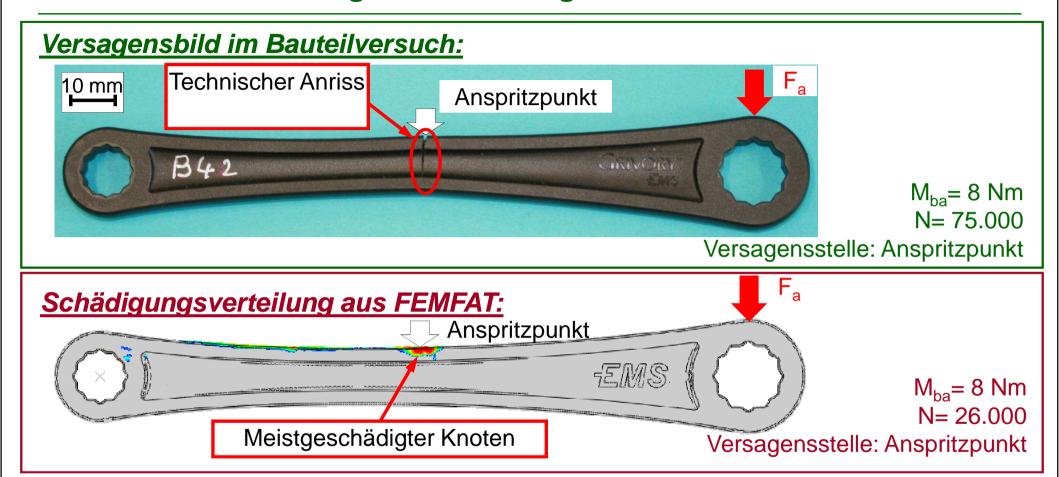
Quelle:

Guster Ch., Pinter G., Fleischer H., Lang R.W., Eichlseder W. (2009): "Betriebsfeste Dimensionierung von faserverstärkten Kunststoffkomponenten - eine durchgängig Simulationskette von der Spritzgußsimulation zur Schädigungsrechnung" IKVFachtagung: Kunststoffgerecht simulieren - Auslegung von Spritzgussbauteilen mit CAE, IKV der RWTH Aachen, 19.-20.3.2009, Aachen (D).



VALIDIERUNG: Vergleichsspannungen nach Mises bei M_{ba}=8 Nm

VALIDIERUNG: Schädigungsverteilung bei M_{ba}=8 Nm



Quelle:

Guster Ch., Pinter G., Fleischer H., Lang R.W., Eichlseder W. (2009): "Betriebsfeste Dimensionierung von faserverstärkten Kunststoffkomponenten - eine durchgängig Simulationskette von der Spritzgußsimulation zur Schädigungsrechnung" IKVFachtagung: Kunststoffgerecht simulieren - Auslegung von Spritzgussbauteilen mit CAE, IKV der RWTH Aachen, 19.-20.3.2009, Aachen (D).

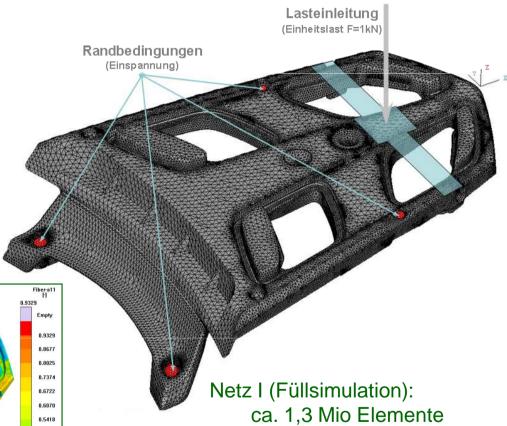
VALIDIERUNG: Gegenüberstellung Bauteilversuch - Simulation

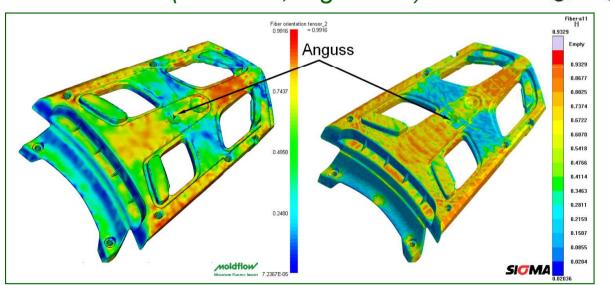
- ✓ Simulierte und tatsächliche Versagensstellen stimmen überein!
- ✓ Simulation = konservativ → Schwingspielzahl um Faktor 3 unterschätzt!

Quelle:

Guster Ch., Pinter G., Fleischer H., Lang R.W., Eichlseder W. (2009): "Betriebsfeste Dimensionierung von faserverstärkten Kunststoffkomponenten - eine durchgängig Simulationskette von der Spritzgußsimulation zur Schädigungsrechnung" IKVFachtagung: Kunststoffgerecht simulieren - Auslegung von Spritzgussbauteilen mit CAE, IKV der RWTH Aachen, 19.-20.3.2009, Aachen (D).

Inhalt


- 1. Motivation und Zielsetzung
- 2. Lebensdauerabschätzung auf Basis lokaler Größen
 - Nötige Erweiterung für kgfv Kunststoffe
 - Wesentliche Einflüsse auf die lokale Wöhlerlinie
- 3. Experimentelles
 - Werkstoffe und Prüfkörper
 - Faserorientierung
- 4. Ergebnisse und Modellableitungen
 - Mittelspannungseinfluss ⇒ Haigh-Diagramm
 - Werkstoffanisotropie ⇒ neuartiges Modell in FEMFAT
- 5. Geschlossene Simulationskette
 - Validierung am "EMS-Ringschlüssel"
- 6. Anwendungsbeispiel
- 7. Zusammenfassung

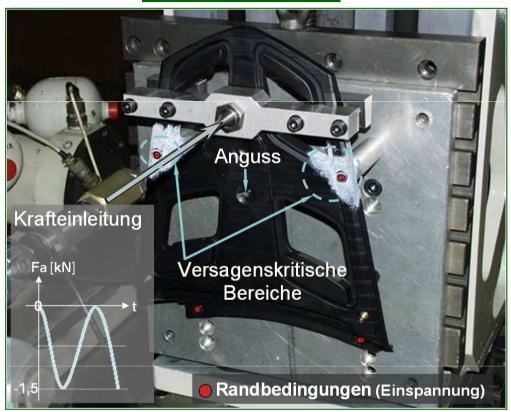

ANWENDUNGSBEISPIEL: Gepäckbrücke (BMW R 1200 RT)

FE-Spannungsanalyse: (Abaqus)

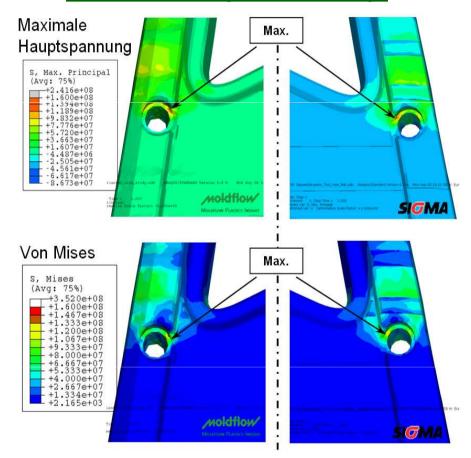
Füllsimulation: (Moldflow, Sigmasoft)

Quelle:

Fleischer H., Brune M., Thornagel M., Thomas B., Guster Ch. (2009): "Von der Spritzgießsimulation zur Betriebsfestigkeitsdimensionierung – Entwicklung und Einsatz einer durchgängigen Simulationskette", VDI Fachtagung: Kunststoffe im Automobilbau 2009, 25.-26.3.2009, Mannheim (D).


Netz II (FE-Spannungsanalyse):

ca. 400.000 Elemente


ANWENDUNGSBEISPIEL: Gepäckbrücke (BMW R 1200 RT)

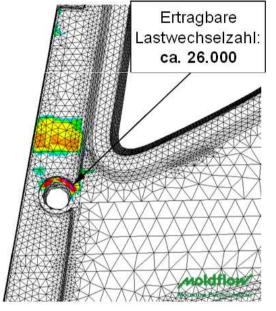
Bauteilversuch:

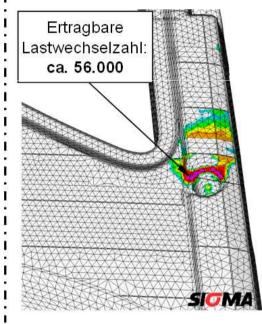
• mit max. Drucklastniveau von 1,5kN geprüft

FE-Spannungsverteilung:

Quelle:

Fleischer H., Brune M., Thornagel M., Thomas B., Guster Ch. (2009): "Von der Spritzgießsimulation zur Betriebsfestigkeitsdimensionierung – Entwicklung und Einsatz einer durchgängigen Simulationskette", VDI Fachtagung: Kunststoffe im Automobilbau 2009, 25.-26.3.2009, Mannheim (D).


ANWENDUNGSBEISPIEL: Gepäckbrücke (BMW R 1200 RT)


Ergebnisvergleich

VERSUCH:

- Technischer Anriss stets an selber Stelle
- Ertragbare Schwingspielzahlen zwischen
 N=46.000 und N=96.000

• Schädigungsverteilung sieh Versuchsergebnis

FEMFAT:

- Berechnete Schwingspielzahlen zwischen N=26.000 und N=56.000
- ✓ Gute Übereinstimmung beider Modelle mit dem Versuch!
- ✓ Simulierte und tatsächliche Versagensstellen stimmen gut überein (gemappte Daten mit Sigmasoft sogar näher an Realität)!
- ✓ Simulation liefert konservatives Ergebnis!

Inhalt

1. Motivation und Zielsetzung

2. Lebensdauerabschätzung auf Basis lokaler Größen

- Nötige Erweiterung für kgfv Kunststoffe
- Wesentliche Einflüsse auf die lokale Wöhlerlinie

3. Experimentelles

- Werkstoffe und Prüfkörper
- Faserorientierung

4. Ergebnisse und Modellableitungen

- Mittelspannungseinfluss ⇒ Haigh-Diagramm
- Werkstoffanisotropie ⇒ neuartiges Modell in FEMFAT

5. Geschlossene Simulationskette

- Validierung am "EMS-Ringschlüssel"
- 6. Anwendungsbeispiel
- 7. Zusammenfassung

Zusammenfassung

- Schwingfestigkeitsverhalten von kurzglasfaserverstärkten Polymeren kann mittels Wöhlerlinien beschrieben werden
 - → umfassende Datenbasis in Form von Wöhlerlinien wurde generiert!
- Lebensdauerberechnung von kgfv Polymerbauteilen verlangt Kenntnis lokaler Einflüsse, wie z.B. Faserorientierung zufolge des Herstellungsprozesses usw.
 - → Modelle zur Berücksichtigung relevanter Einflussparameter auf die Schwingfestigkeit wurden abgeleitet und (teilweise) in FEMFAT implementiert!
- Die Einbindung von Füllsimulation (z.B. mittels Moldflow) in die Simulationskette ist notwendig, um Informationen über lokale Orientierungen und damit lokale Werkstoffdaten zu erhalten
 - → die Spritzgusssimulation wurde erstmalig der Prozesskette (Fertigung FE-Spannungsverteilung Lebensdauerabschätzung) vorangestellt!
- Geschlossene Simulationskette zur betriebsfesten Dimensionierung von geometrisch komplexen Strukturbauteilen aus kgfv Kunststoffen steht damit zur Verfügung!

Publikationen

4a Technologietag 2010

- Brune, M., Fleischer H., Guster Ch., Balika W. (2006): "Rechnerische Lebensdauerabschätzung für Bauteile aus kurzglasfaserverstärkten Kunststoffen", Internationaler Kongress Kunststoffe im Automobilbau, VDI-Kunststofftechnik, 29.-30.3.2006, Mannheim (D).
- Guster, Ch., Pinter, G., Eichlseder, W., Lang, R. W (2007): "The Influence of Fiber-Orientation and Stress Ratio on the Fatigue Behavior of Short-Glassfiber-Reinforced Polymers", Society of Plastics Engineers ANTEC 2007, CD Conference Proceedings, 6.-11.5.2007, Cincinnati (Ohio, USA), ISBN 0-9753707-5-8.
- Guster, Ch., Eichlseder, W., Pinter, G., Lang R.W. (2007): "Kurzglasfaserverstärkte Kunststoffe Charakterisierung der Werkstoffaniosotropie und Untersuchung deren Einfluss auf das Schwingfestigkeitsverhalten", VLK-News, 15. Jahrg., Ausgabe 2/2007, pp. 16-20.
- Guster Ch., Pinter G., Balika W., Eichlseder W., Lang R.W (2008): "Fiber orientation and fatigue behaviour of a short glass-fiber reinforced partial aromatic polyamide", 2nd Fatigue Symposium Leoben, Lehrstuhl für Allgemeinen Maschinenbau, Montanuniversität Leoben, 23.-24.4.2008, Leoben (A), pp. 444 455, ISBN 978-3-902544-0.
- *Unger B., Fleischer H., Guster Ch., Pinter G. (2008):* "Lebensdauerberechnung für Kunststoffkomponenten", DVM Tag 2008 Leichtbaustrategien Ein wesentlicher Beitrag zur Klimadebatte, 23.-25.4.2008, Berlin (D), DVM Bericht 675, pp. 39 51.
- Guster Ch., Pinter G., Fleischer H., Lang R.W., Eichlseder W. (2009): "Betriebsfeste Dimensionierung von faserverstärkten Kunststoffkomponenten eine durchgängig Simulationskette von der Spritzgußsimulation zur Schädigungsrechnung" IKVFachtagung: Kunststoffgerecht simulieren Auslegung von Spritzgussbauteilen mit CAE, IKV der RWTH Aachen, 19.-20.3.2009, Aachen (D).
- Fleischer H., Brune M., Thornagel M., Thomas B., Guster Ch. (2009): "Von der Spritzgießsimulation zur Betriebsfestigkeitsdimensionierung Entwicklung und Einsatz einer durchgängigen Simulationskette", VDI Fachtagung: Kunststoffe im Automobilbau 2009, 25.-26.3.2009, Mannheim (D).
- Guster Ch., Pinter G., Eichlseder W., Lang R.W. (2009): "Effects of temperature and moisture on the tensile/tensile fatigue behavior of an injection molded sgf-reinforced partial aromatic polyamide", 12th International Conference on Fracture, CD-Proceedings ICF 12, 12.-17.7.2009, Ottawa, (CDN).
- Guster Ch. (2009): "Ansätze zur Lebensdauerberechnung von kurzglasfaserverstärkten Polymeren", Dissertation, Lehrstuhl für Allgemeinen Maschinenbau, Montanuniversität Leoben, Juni 2009, Leoben (A).

Danksagung

Die präsentierte Forschungsarbeit wurde an der *Polymer Competence Center Leoben GmbH im Rahmen des* Kompetenzzentren-Programms Kplus des Bundesministeriums für Verkehr, Innovation und Technologie unter Beteiligung der unten genannten wissenschaftlichen Partner und Unternehmenspartner durchgeführt und mit Mitteln des Bundes und der Länder Steiermark und Oberösterreich gefördert.

Institut für Werkstoffkunde und Prüfung der Kunststoffe

Unternehmenspartner

Wissenschaftliche Partner

- **BMW Group**
- **EMS** Grivory
- Engineering Center Steyr (Magna Powertrain ECS)

Lehrstuhl für Allgemeinen Maschinenbau

BMW Group

Montanuniversität Leoben Lehrstuhl für Allgemeinen Maschinenbau

Leitung:

Univ.Prof. Dipl.-Ing. Dr. Wilfried Eichlseder

Franz-Josef-Straße 18 A-8700 Leoben

www.mu-leoben.at/institute/maschbau.htm

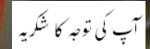
amb@mu-leoben.at fatigue@mu-leoben.at

Tel. 0043 3842 402 1400 Fax. 0043 3842 402 1402

Vielen Dank für Ihre Aufmerksamkeit!

¡Muchas gracias por su atención!

Köszönöm a figyelmüket!


از توجه شما سپاسگزارم

Thank you for your attention!

Merci pour votre attention!

Serdecznie dziekujemy za Panstwa uwage!

شكرا على إتثباهكم

