

# **Polymers in Crash and Impact Simulation**

Stefan Kolling

Laboratory of Mechanics

Giessen University of Applied Sciences

stefan.kolling@mmew.fh-giessen.de





More and more structural parts are made from plastics



Percentage of polymeric materials in a middle class car (2003)

- Important application in automotive industry (safety) is subjected to the protection of passengers and pedestrians.
- There are numerous of parts that have to be considered carefully in numerical simulations.



#### Why Care about Polymers?

- Passenger protection:
  - Cockpit / Internal structures
  - Seatfoams
  - Door and inner trim
  - ...

#### Door trim\*, Opel Corsa



\* taken from B. Lauterbach, 5th German LS-DYNA Forum , Ulm 2006









- Pedestrian protection
  - bumper fascia / foam / hood / adhesives
  - different plastic parts / windscreen / ...



### Validation and Verification Process







 To characterize a material phenomenologically, we consider a uniaxial tensile/compression test with unloading



- Hereby we use engineering stresses and engineering strains for a rough subdivision where A<sub>0</sub> is the initial cross section and l<sub>0</sub> the initial length.
- There is a number of corresponding material models that are available in commercial codes





- For the dynamic response, strain rate dependent tests are performed subsequently:
  - pendulum test
  - drop test
  - ...



Impetus II in Gießen



#### Droptower in Friedberg











(Crash-) Numericist: foam is a material with Poisson's ratio close to zero



- For crash and impact simulation, user-friendly material laws are available in commercial FE-codes allowing for a direct input of experimental data from tensile and compression tests
- Improvement of such laws is necessary sometimes

## Validation Tests: Compression / Tension







## **Some Validation Tests - Shear**













Unloading has been included by an elastic damage formulation





- Materials with Permanent
  Deformation
  - Metals (Aluminum / Steel)
  - Crushable Foams
  - Plastics









## **Phenomenological Modeling: Necking**





EMI

performed by EMI Freiburg

Necking in metals happens at nearly constant volume and leads directly to rupture

Necking in polymers is usually followed by a stabilization phase

This phenomenon can be simulated by Von Mises plasticity

# **Tensile Test Simulation**



- Compare force-displacement-curve for each strain rate:
  - Correlation must be exact before necking!
  - If correlation is sufficiently accurate after necking, stop
  - If not, modify either the extrapolation or the yield curve step by step



## **Phenomenological Modeling: Shear Bands**



<sup>1</sup>performed by IWM Freiburg

Similar to necking, regions of high deformation may occur under Compression



Note that both necking and forming of shear bands are mesh dependent

# Phenomenological Modeling: Crazing





- change of colour to white detectable
- crazing leads to plastic (permanent)
  deformation with increase of volume
- crazing leads to low yield stress values in uniaxial/biaxial tension
- seems to occur under high values of hydrostatic tension











#### Experimental Data vs. SAMP





- > Yield surface at initial yielding is fitted quite well using SAMP-1
- Crazing can also be approximated
- Note that the hardening curve has to be treated carefully if compressibility is considered





>

## Validation of a Component Test







## Validation of a Component Test



Typical behaviour for thermoplastics: material cards that are fitted for uniaxial tension yield a too soft responds under bending and compression

different yield curves under compression and tension necessary

Taking the different behavior of shear into account yields a further improvement



## **Component Test: Simulation of Crazing**

- Simulation of crazing:
  - plastic Poisson's ratio decreases with increasing plastic strain
  - plastic incompressibility under compression



This Effect cannot be simulated by any isochoric elasto-plastic material law! Improvement of the deformation behavior Influence on the force-displacement-curve is negligible

## **Component Test: Simulation of Crazing**





# Conclusion



- Mechanical properties of thermoplastics are strongly influenced by
  - strain rate (+ temperature, moisture, ....)
  - triaxiality (tension, compression, shear, ...)
- Consideration of all these effects is expensive !

